李飞飞团队年度报告揭底大模型训练成本:Gemini Ultra是GPT-4的2.5倍
机器之心报道
2023 年的进展速度比以往任何一年都要快得多,GPT-4、Gemini 和 Claude 3 等最先进的系统显示出令人印象深刻的多模态功能,能够生成流畅的数据多种语言的文本、处理音频和图像以及解释网络梗图。 2023 年新发布的支持生成式 AI 的大型语言模型数量比前一年翻了一番,其中三分之二是开源模型,例如 Meta 的 Llama 2,但性能最佳的是闭源模型,例如 Google 的 Gemini Ultra。 2023 年,工业界继续主导人工智能前沿研究。工业界产生了 51 个值得关注的机器学习模型,而学术界仅贡献了 15 个。2023 年,产学界合作产生了 21 个值得关注的模型,再创新高。 美国领先中国、欧盟和英国,成为顶级人工智能模型的主要来源地。2023 年,61 个著名的人工智能模型源自美国机构,远远超过欧盟的 21 个和中国的 15 个。 Gemini Ultra 是第一个在大规模多任务语言理解关键基准测试中达到人类水平表现的 LLM。OpenAI 的 GPT-4 也不甘示弱,在 Holistic Evaluation of Language Models 基准上取得了 0.96 的平均胜率得分,该基准将 MMLU 与其他评估结合起来。 不过,人工智能性能的提高是有代价的,报告发现,前沿人工智能模型的开发成本正变得越来越高。据说 Gemini Ultra 消耗了价值 1.91 亿美元的计算资源,而 GPT-4 的开发成本估计为 7800 万美元。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:[email protected]
微信扫码关注该文公众号作者
戳这里提交新闻线索和高质量文章给我们。
来源: qq
点击查看作者最近其他文章