李飞飞团队重磅报告解读AI十大趋势:中国AI专利数全球第一,大模型训练狂烧钱,医学领域AI应用突出 | 大模界公众号新闻2024-04-17 05:04“大模界”是每日经济新闻推出一档专注生成式AI与大模型技术的前沿科技报道栏目。在这里,我们将聚焦生成式AI技术浪潮,展现从文字、图像、音频、视频的大模型如何编织数字化世界。在这里,我们将解码、评测国内外各类大模型,探究它们如何成为变革各行各业的重要力量。在这里,我们将关注AIGC行业发展,联手行业领军人物和顶尖专家,共同揭示最新产品创新和技术突破,前瞻未来发展趋势。欢迎关注“大模界”,您将见证AIGC如何重塑内容生态,如何以前沿之力推动社会进步。让我们共同开启一场关于AI新纪元的无限旅程!《2024 年人工智能指数报告》 图片来源:报告截图当地时间4月15日,斯坦福大学“以人为本”人工智能研究院(Human Centered Artificial Intelligence,简称HAI)发布了第七个年度AI Index报告,这是关于AI行业现状的最全面的报告之一。报告称,今年的报告是迄今为止覆盖面最广的,恰逢AI对社会的影响力达到前所未有的重要时刻。从内容上看,报告长达300多页,不仅追踪了AI技术的进步情况、公众感知度、AI训练成本、伦理监管等常规话题,也加入了AI对科学和医学领域影响的新章节。图片来源:报告截图HAI成立于2019年,由著名AI科学家李飞飞与哲学教授约翰·埃切曼迪联合担任院长,致力于推动人工智能领域的跨学科合作。今年的AI Index报告同样秉承这样的精神,邀请来自于斯坦福大学多个学院的不同学科专家撰写,并得到了谷歌、OpenAI等业界巨头的支持,以及埃森哲、GitHub、麦肯锡等机构在研究和分析上的协助。AI Index报告旨在用无偏见、严格筛选、广泛采纳的数据,为政、学、商和大众提供全面且精细的AI趋势解读,已成为各国政策制定者、学院研究和新闻媒体参考的权威行业报告。以下是《每日经济新闻》记者梳理的十大关键信息:1.开源大模型数量激增,但性能不及闭源整个2023年共有149个基础模型发布,是2022年发布数量的两倍以上。在这些新发布的模型中,65.7%是开源的,相比之下,2022年仅为44.4%,2021年则为33.3%。然而,在10个AI基准测试中,闭源模型的性能优于开源,性能优越的中位数为24.2%。图片来源:报告截图谷歌在2023年发布的基础模型最多,达18个,其次是Meta(11个)、Microsoft(9个)、OpenAI(7个)。2023年发布基础模型最多的学术机构是加州大学伯克利分校(3个)。图片来源:报告截图2023年,企业界发布了51个重要的机器学习模型,而学术界仅贡献了15个。此外,2023年产学研合作成果的模型数量也创下新高,达到21个。2.AI模型训练“烧钱”加剧最先进的AI模型的训练成本已达到前所未有的水平。例如,OpenAI的GPT-4训练据估计耗费了价值7800万美元的计算资源,而谷歌Gemini Ultra的训练成本则高达1.91亿美元。作为对比,2017年Transformer模型训练成本约为900美元。2019年发布的RoBERTa Large训练成本约为16万美元。图片来源:报告截图3.顶级模型数量美国领先,专利数量中国领跑从区域竞争来看,美国在顶级AI模型方面领先于中国、欧盟和英国。2023年,来自美国机构的知名AI模型数量为61个,超过欧盟的21个和中国的15个。图片来源:报告截图不过,在AI专利方面,中国处于领先位置。2022年,中国以61.1%的比例领跑全球AI专利来源地,远超美国(20.9%)。对比2010年,当时美国在AI专利方面的占比高达54.1%。图片来源:报告截图4.AI在复杂任务上的表现仍落后人类在图像分类、视觉推理和英语理解等方面,AI的表现已经优于人类。然而,在更复杂的任务上,例如竞赛级别的数学、视觉常识推理和规划,AI的表现仍然落后于人类。图片来源:报告截图与此同时,在既有的基准测试(例如ImageNet、SQuAD 和 SuperGLUE)上,AI模型的性能已经趋于饱和。2023年出现了几个具有挑战性的新基准测试,包括用于编码的SWE-bench、用于图像生成的HEIM、用于通用推理的MMMU、用于道德推理的 MoCa、用于基于代理的行为的AgentBench以及用于检测幻觉的HaluEval。5.缺乏严格、标准化的AI责任评估方法随着深度伪造、版权纠纷、隐私安全等问题逐渐凸显,报告显示,当前严重缺乏严格且标准化的负责任AI评估方法。OpenAI、谷歌和 Anthropic等行业领袖使用不同的负责任AI基准测试来评估他们的模型,这种做法使人们难以系统地比较顶级AI模型的风险和局限性。图片来源:报告截图报告新引入的“基础模型透明度指数”显示,AI开发企业缺乏透明度,尤其是在训练数据和方法披露方面。这种开放性的缺乏阻碍了人们进一步了解AI系统的严密性和安全性。6.生成式AI投资增长近8倍尽管2023年整个AI领域的投资有所下降,但生成式AI领域的私人投资却在激增,在2022年的基础上几乎增长了八倍,达到252亿美元。OpenAI、Anthropic、Hugging Face和Inflection等领军企业都宣布了大规模的融资轮次。图片来源:报告截图从区域来看,美国作为AI私人投资的领导者,优势地位进一步扩大。2023年,美国的AI投资达到672亿美元,增长22.1%,欧盟和中国的AI投资处于下滑态势。尽管全球AI投资连续第二年下降,但新成立的AI公司数量却激增至1812家,比2022年增长了40.6%。7.AI降本增效能力初显麦肯锡2023年的报告显示,目前55%的受访组织至少在一个业务部门或职能中使用了AI(包括生成式AI),高于2022年的50%和2017年的20%。42%的受访组织报告实施AI后降低了成本,59%的受访组织报告了收入增长。与2022年相比,报告成本降低的受访组织比例增加了10个百分点。图片来源:报告截图2023年,多项研究评估了AI对劳动力的影响,表明AI使员工能够更快地完成任务并提高产出质量。这些研究还展示了AI弥合低技能和高技能工人之间技能差距的潜力。8.AI推动科学进步,医学尤为突出2023年,多个重大的科学相关AI应用出现,包括提高算法排序效率的AlphaDev,促进材料发现过程的GNoME。在医学领域,2023年出现了多个重要的AI医疗系统,例如用于增强大流行预测的EVEscape,以及辅助AI驱动将基因突变分类的AlphaMissence。AI正越来越多地被用于推动医学进步。AI系统在MedQA基准测试(评估人工智能临床知识水平的关键测试)上的表现也取得了显著进步,2023年表现最出色的模型GPT-4 Medprompt准确率达到了90.2%,比2022年的最高分高出 22.6个百分点。图片来源:报告截图9.监管力度急剧增强2023年有25项AI相关法规出台,同比增长56.3%。美国和欧盟在AI政策方面取得里程碑式进展。欧盟就《人工智能法》条款达成一致,美国总统拜登签署了一份关于AI的行政命令,这是当年美国最引人注目的AI政策举措。图片来源:报告截图全球立法程序中提及AI的次数几乎翻了一番,从2022年的1247次增加到2023年的2175次。2023年有49个国家的立法程序中提到了AI,而且每个大洲至少有一个国家在2023年讨论了AI。对AI的限制性立法已经成为全球趋势。10.公众对AI的认知在提高,紧张感也在增加一份来自益普索的调查显示,2023年,认为AI将在未来三到五年内显著影响其生活的人口比例从60%上升到66%。多伦多大学的一项国际调查显示,63%的受访者知道ChatGPT。在那些知道的人中,大约有一半的人每周至少使用ChatGPT一次。对AI感到紧张的人数比例在增加。益普索的调查中,有52%的人对AI产品和服务感到紧张,比2022年增加了13个百分点。在美国,皮尤研究中心的数据表明,有52%的美国人表示对AI的担忧比兴奋更多,高于2022年的38%。公众对AI带来的经济影响不太乐观。在益普索的调查中,37%的受访者认为AI将改善他们的工作,34%的人认为AI将促进经济,32%的人认为AI将促进就业市场。图片来源:报告截图报告也报道了一些有趣的人口分布特点。比如,年轻人比老年人更相信AI对娱乐的丰富作用,高收入和教育程度高的人群对AI的正面潜力也更为乐观。包括德国、荷兰、澳大利亚、比利时、加拿大和美国等西方国家对AI产品和服务的正面评价最低,但这一现象在2023年有所好转。记者|李孟林编辑|何小桃 兰素英 盖源源校对|孙志成|每日经济新闻 nbdnews 原创文章|未经许可禁止转载、摘编、复制及镜像等使用如需转载请向本公众号后台申请并获得授权微信扫码关注该文公众号作者戳这里提交新闻线索和高质量文章给我们。来源: qq点击查看作者最近其他文章