Redian新闻
>
CVPR 2024|文本或图像提示精准编辑 3D 场景,美图&信工所&北航&中大联合提出 3D 编辑方法 CustomNeRF

CVPR 2024|文本或图像提示精准编辑 3D 场景,美图&信工所&北航&中大联合提出 3D 编辑方法 CustomNeRF

公众号新闻

作者 | 美图影像研究院

美图影像研究院(MT Lab)与中国科学院信息工程研究所、北京航空航天大学、中山大学共同提出了 3D 场景编辑方法——CustomNeRF,同时支持文本描述和参考图像作为 3D 场景的编辑提示,该研究成果已被 CVPR 2024 接收。

背景

自 2020 年神经辐射场 (Neural Radiance Field, NeRF) 提出以来,将隐式表达推上了一个新的高度。作为当前最前沿的技术之一,NeRF 快速泛化应用在计算机视觉、计算机图形学、增强现实、虚拟现实等领域,并持续受到广泛关注。

有赖于易于优化和连续表示的特点,NeRF 在 3D 场景重建中有着大量应用,也带动了 3D 场景编辑领域的研究,如 3D 对象或场景的纹理重绘、风格化等。为了进一步提高 3D 场景编辑的灵活性,近期基于预训练扩散模型进行 3D 场景编辑的方法也正在被大量探索,但由于 NeRF 的隐式表征以及 3D 场景的几何特性,获得符合文本提示的编辑结果并非易事。

为了让文本驱动的 3D 场景编辑也能够实现精准控制,美图影像研究院(MT Lab)与中国科学院信息工程研究所、北京航空航天大学、中山大学,共同提出了一种将文本描述和参考图像统一为编辑提示的 CustomNeRF 框架,可以通过微调预训练的扩散模型将参考图像中包含的特定视觉主体 V∗嵌入到混合提示中,从而满足一般化和定制化的 3D 场景编辑要求。该研究成果目前已被 CVPR 2024 收录,代码已开源。


| 论文链接:https://arxiv.org/abs/2312.01663

| 代码链接:https://github.com/hrz2000/CustomNeRF


图 1  CustomNeRF 在文本驱动(左)和图像驱动(右)的编辑效果

CustomNeRF 解决的两大挑战

目前,基于预训练扩散模型进行 3D 场景编辑的主流方法主要分为两类。

其一,是使用图像编辑模型迭代地更新数据集中的图像,但是受限于图像编辑模型的能力,会在部分编辑情形下失效。其二,则是利用分数蒸馏采样(SDS)损失对场景进行编辑,但由于文本和场景之间的对齐问题,这类方法在真实场景中无法直接适配,会对非编辑区域造成不必要的修改,往往需要 mesh 或 voxel 等显式中间表达。

此外,当前的这两类方法主要集中在由文本驱动的 3D 场景编辑任务中,文本描述往往难以准确表达用户的编辑需求,无法将图像中的具体概念定制化到 3D 场景中,只能对原始 3D 场景进行一般化编辑,因此难以获得用户预期中的编辑结果。

事实上,获得预期编辑结果的关键在于精确识别图像前景区域,这样能够在保持图像背景的同时促进几何一致的图像前景编辑。

因此,为了实现仅对图像前景区域进行准确编辑,该论文提出了一种局部 - 全局迭代编辑(LGIE)的训练方案,在图像前景区域编辑和全图像编辑之间交替进行。该方案能够准确定位图像前景区域,并在保留图像背景的同时仅对图像前景进行操作。

此外,在由图像驱动的 3D 场景编辑中,存在因微调的扩散模型过拟合到参考图像视角,所造成的编辑结果几何不一致问题。对此,该论文设计了一种类引导的正则化,在局部编辑阶段仅使用类词来表示参考图像的主体,并利用预训练扩散模型中的一般类先验来促进几何一致的编辑。

CustomNeRF 的整体流程

如图 2 所示,CustomNeRF 通过 3 个步骤,来实现在文本提示或参考图像的指导下精确编辑重建 3D 场景这一目标。

图 2  CustomNeRF 的整体流程图

首先,在重建原始的 3D 场景时,CustomNeRF 引入了额外的 mask field 来估计除常规颜色和密度之外的编辑概率。如图 2(a) 所示,对于一组需要重建 3D 场景的图像,该论文先使用 Grouded SAM 从自然语言描述中提取图像编辑区域的掩码,结合原始图像集训练 foreground-aware NeRF。在 NeRF 重建后,编辑概率用于区分要编辑的图像区域(即图像前景区域)和不相关的图像区域(即图像背景区域),以便于在图像编辑训练过程中进行解耦合的渲染。

其次,为了统一图像驱动和文本驱动的 3D 场景编辑任务,如图 2(b)所示,该论文采用了 Custom Diffusion 的方法在图像驱动条件下针对参考图进行微调,以学习特定主体的关键特征。经过训练后,特殊词 V∗可以作为常规的单词标记用于表达参考图像中的主体概念,从而形成一个混合提示,例如“a photo of a V∗ dog”。通过这种方式,CustomNeRF 能够对自适应类型的数据(包括图像或文本)进行一致且有效的编辑。

在最终的编辑阶段,由于 NeRF 的隐式表达,如果使用 SDS 损失对整个 3D 区域进行优化会导致背景区域发生显著变化,而这些区域在编辑后理应与原始场景保持一致。如图 2(c)所示,该论文提出了局部 - 全局迭代编辑(LGIE)方案进行解耦合的 SDS 训练,使其能够在编辑布局区域的同时保留背景内容。

具体而言,该论文将 NeRF 的编辑训练过程进行了更精细的划分。借助 foreground-aware NeRF,CustomNeRF 可以在训练中灵活地控制 NeRF 的渲染过程,即在固定相机视角下,可以选择渲染前景、背景、以及包含前景和背景的常规图像。在训练过程中,通过迭代渲染前景和背景,并结合相应的前景或背景提示,可以利用 SDS 损失在不同层面编辑当前的 NeRF 场景。其中,局部的前景训练使得在编辑过程中能够只关注需编辑的区域,简化复杂场景中编辑任务的难度;而全局的训练将整个场景考虑在内,能够保持前景和背景的协调性。为了进一步保持非编辑区域不发生改变,该论文还利用编辑训练前的背景监督训练过程中所新渲染的背景,来保持背景像素的一致性。

此外,图像驱动 3D 场景编辑中存在着加剧的几何不一致问题。因为经过参考图像微调过的扩散模型,在推理过程中倾向于产生和参考图像视角相近的图像,造成编辑后 3D 场景的多个视角均是前视图的几何问题。为此,该论文设计了一种类引导的正则化策略,在全局提示中使用特殊描述符 V*,在局部提示中仅使用类词,以利用预训练扩散模型中包含的类先验,使用更几何一致的方式将新概念注入场景中。

实验结果

如图 3 和图 4 展示了 CustomNeRF 与基线方法的 3D 场景重建结果对比,在参考图像和文本驱动的 3D 场景编辑任务中,CustomNeRF 均取得了不错的编辑结果,不仅与编辑提示达成了良好的对齐,且背景区域和原场景保持一致。此外,表 1、表 2 展示了 CustomNeRF 在图像、文本驱动下与基线方法的量化比较,结果显示在文本对齐指标、图像对齐指标和人类评估中,CustomNeRF 均超越了基线方法。


图 3  图像驱动编辑下与基线方法的可视化比较

图 4  文本驱动编辑下与基线的可视化比较

表 1 图像驱动编辑下与基线的定量比较

表 2 文本驱动编辑下与基线的定量比较

总结

本论文创新性地提出了 CustomNeRF 模型,同时支持文本描述或参考图像的编辑提示,并解决了两个关键性挑战——精确的仅前景编辑以及在使用单视图参考图像时多个视图的一致性。该方案包括局部 - 全局迭代编辑(LGIE)训练方案,使得编辑操作能够在专注于前景的同时保持背景不变;以及类引导正则化,减轻图像驱动编辑中的视图不一致,通过大量实验,也验证了 CustomNeRF 在各种真实场景中,能够准确编辑由文本描述和参考图像提示的 3D 场景。

研究团队

该研究成果由美图影像研究院(MT Lab)和中国科学院信息工程研究所、北京航空航天大学、中山大学的研究者们共同提出。

美图影像研究院(MT Lab)是美图公司致力于计算机视觉、机器学习、增强现实、云计算等领域的算法研究、工程开发和产品化落地的团队,为美图秀秀、美颜相机、Wink、美图设计室、美图云修、WHEE 等美图旗下全系软硬件产品提供技术支持,同时面向影像行业内多个垂直赛道提供针对性 SaaS 服务,通过前沿技术推动美图产品发展,曾先后荣获国家科学技术进步奖、教育部技术发明奖,同时在 CVPR、ICCV、ECCV 等国际计算机视觉顶级赛事中斩获十余项冠亚军奖项,并在人工智能领域顶级会议与顶级期刊上累计发表 49 篇学术论文。

2023 年,美图公司持续持续深入 AI 领域,研发投入 6.4 亿元,占总收入的 23.6%,同年 6 月,正式推出美图奇想大模型(MiracleVision),依托强大技术能力,在不到半年时间已经迭代至 4.0 版本。未来,美图影像研究院(MT Lab)将加强 AI 能力储备,在技术端持续强化模型能力,助力构建 AI 原生工作流。

 内容推荐

跳进 AI 的奇妙世界,一起探索未来工作的新风貌!想要深入了解 AI 如何成为产业创新的新引擎?好奇哪些城市正成为 AI 人才的新磁场?《中国生成式 AI 开发者洞察 2024》由 InfoQ 研究中心精心打造,为你深度解锁生成式 AI 领域的最新开发者动态。无论你是资深研发者,还是对生成式 AI 充满好奇的新手,这份报告都是你不可错过的知识宝典。欢迎大家扫码关注「AI 前线」公众号,回复「开发者洞察」领取。

 活动推荐

AICon 全球人工智能开发与应用大会 暨 大模型应用生态展将于 5 月 17 日正式开幕,本次大会主题为「智能未来,探索 AI 无限可能」。如您感兴趣,可点击「阅读原文」查看更多详情。

今天是会议 9 折购票阶段,购票或咨询其他问题请联系票务同学:13269078023,或扫描上方二维码添加大会福利官,可领取福利资料包。

今日荐文


逃离 Windows!德国又宣布迁移到 Linux,涉及数万系统、3 万余人,官员吐苦水:Windows 对硬件要求太高了


“干掉程序员”,百度是认真的!发布三大开发工具和全新操作系统,李彦宏:只要会说话就会干开发


芯片反击,英特尔和AMD惨了!国内电信运营商逐步淘汰外国芯片,网友:这只是个开始


字节跳动成全球最大独角兽公司?官方回应;智己汽车三次致歉小米:我们被网络霸凌;苹果计划裁员超 600 人|AI周报


OpenAI 创始成员用 1000 行 C 代码手搓了一个大模型,Mac 即可运行!网友:真男人就该用C编程

你也「在看」吗?👇

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Sora场景转「3D资产」!浙大CAD&CG全重实验室提出文本转3D新SOTA:多功能、可拓展CVPR 2024 | DrivingGaussian:环视动态自动驾驶场景重建仿真美股很可能涨到确定降息之时CVPR 2024 | 知识感知注意力!用于组织病理学全幻灯片图像分析CVPR 2024 | 文本一键转3D数字人骨骼动画,阿尔伯塔大学提出MoMask框架CVPR 2024 | 港理工联合OPPO提出统一且通用的视频分割大模型CVPR 2024 | 无参数无训练也能大幅涨点!港城大等提出全新小样本3D分割模型CVPR 2024 | MotionEditor:首个面向动作编辑的视频扩散模型简单好用!北大、普林斯顿联合提出即插即用的大语言模型加速方法CVPR 2024 | 让视频姿态Transformer变得飞速,北大提出高效三维人体姿态估计框架HoTCVPR 2024 | OmniParser:统一图文解析模型:文字检测识别、视觉信息抽取和表格识别CVPR 2024 | E2STR:基于多模态上下文学习构建的自进化文本识别模型搬家清囤的Lululemon, Aritzia Randy & Murphy, Sophie Webster蝴蝶鞋及其他【童心依然】《童年》&《黑猫警长》&《日本娃娃》拯救被「掰弯」的GPT-4!西交微软北大联合提出IN2训练治疗LLM「中间迷失」CVPR 2024 | 中科大&微软提出:迈向更统一的上下文视觉理解SIGGRAPH2024|上科大、影眸联合提出DressCode:从文本生成3D服装板片【老翁寻花奇遇记之一:集市奇遇】CVPR 2024|让图像扩散模型生成高质量360度场景,只需要一个语言模型CVPR 2024 | 北大&电子科大提出RCBEVDet:毫米波雷达-相机多模态的感知架构加拿大的保护儿童法律 音乐 : 歌声满行囊 (北京天使合唱团)神笔马良画出三维世界,基于线稿的3D生成编辑方法SketchDream来了CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务春雪CVPR 2024 | 谷歌提出OmniGlue:特征匹配新工作CVPR 2024|生成不了光线极强的图片?微信视觉团队有效解决扩散模型奇点问题CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式CVPR 2024 | 擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNetCVPR 2024 | 和马赛克说拜拜!华为、清华等提出基于认知的万物超分大模型CVPR 2024 | 基于MoE的通用图像融合模型,添加2.8%参数完成多项任务CVPR 2024|Adobe提出人像抠图新网络MaGGIeCVPR 2024 | 中大哈佛等提出全新训练方法CLoT,探究大模型幽默创新力俄軍攻下阿夫迪夫卡 終結頓涅次克10年苦難【邱世卿合訂本】2024.02.19实时可编辑3D重建!鼠标拖拽就能控制,港大VAST浙大联合出品WWW 2024 | 港理工等联合提出线性时间图神经网络,适用于大规模推荐系统小说转贴(油篓阿姨的):刚才在Costco被一个大帅哥搭讪了 来源: 楚伊人 于 2024CVPR 2024 | 北大提出HoT:高效3D人体姿态估计新框架陣前換將 兵家大忌 金廈海域 對撞危機【一週軍事雜談 】2024.02.20养老院的三个月 来也匆匆去也匆匆CVPR 2024 | 微软新作StarNet:超强轻量级Backbone
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。