Redian新闻
>
CVPR 2024 | 中大哈佛等提出全新训练方法CLoT,探究大模型幽默创新力

CVPR 2024 | 中大哈佛等提出全新训练方法CLoT,探究大模型幽默创新力

公众号新闻

©PaperWeekly 原创 · 作者 | 黄中展

单位 | 中山大学博士生

研究方向 | 生成式神经网络


多模态大模型具备创造的潜力吗?能力如何?本文从大模型创造力测评与增强等方面进行了探索,从幽默创新响应的角度,揭示了大模型在创新任务上的潜力和不足。目前该成果被计算机视觉顶级会议 CVPR 2024 录用。


论文链接:
https://arxiv.org/abs/2312.02439

项目主页:

https://zhongshsh.github.io/CLoT/

代码链接:

https://github.com/sail-sg/CLoT

为了探索多模态大模型的创造力,中山大学 HCP 实验室林倞教授团队联同 Sea AI Lab、哈佛大学的研究人员从日本传统的创新幽默游戏“大喜利”(Oogiri)切入,探索目前多模态大模型在创新响应上的现状。并提出了让多模态大模型打破常规思维思考(Think Outside the Box)的训练方法 Creative Leap-of-Thought (CLoT)。



什么是“大喜利”创新响应游戏?

“大喜利”本来是指一系列日本传统戏剧游戏,随着时代的快速发展。现代的“大喜利”,目前一般是指一种叫 Tonchi (頓智) 的游戏,通常以游戏节目或智力问答节目的形式呈现,可以参考 B 站的日本著名节目 IPPON 大獎賽 (视频链接):

https://www.bilibili.com/video/BV1jt4y1g7ob/


玩家被提供各种多模态内容,可以是简单的问题、随机图像等,然后提示玩家想出幽默的、有创意的反应,以达到令人惊讶的喜剧效果,如下图所示的例子。


例子1:在第一个“图文到文”的例子中,玩家要求阅读图像,和上面对应的文字,尝试想出一段文字填入对应的“问号?”位置,使得整个图文可以展示出幽默且有创意的效果。在第一个例子中,老人向年轻人寻求帮助,从正常的思维来看,可能的填写方式可以是“请问 xxx 路怎么走?”或者是"可以带我回家吗,我迷路了"之类的┓( ´∀` )┏。然而,所给出的“你...你能帮我解开手铐吗?”的写法具有冲击感、幽默感,且看起来确实是这么一回事,使人忍俊不禁。

例子2:在第二个“图到文”的例子中,玩家要求看图配文,并使得图文搭配起来具有幽默效果。这张图看起来是一个很普通的拖车的图片(需要注意的是,在“大喜利”游戏中,一般图片都是很普通的日常图片)。配文“快让开!我的兄弟伤得很严重”让倾斜着身体 45° 向上的车看起来像是一个奄奄一息的车子。在道路上快速的驰骋也确实体现了位于下方的车很着急,急着送兄弟去医院。整体来说配文相当有趣且幽默!

例子3:在第三个“图到文”的例子中,玩家被要求根据所给的文字进行回复,使得回复和问题合在一起具备幽默感。本例子中的回复似乎在调侃程序员的日常工作主要就是代码的“复制+黏贴”┓( ´∀` )┏ (注:CV 工程师除了可以表示 computer vision 工程师也可以表示 ctrl+c/ctrl+v 工程师) 

本工作主要关注这三种类型的“大喜利”游戏,相关数据 Oogiri-GO(如下表所示,含中英日三种语言)可以进入 Project 页面下载:

https://zhongshsh.github.io/CLoT/





为什么考虑“大喜利”游戏?

“大喜利”游戏是用于探索多模态大模型创新能力的理想平台,因为:

1. “大喜利”游戏是天然的创新响应任务。如上所提到的,现代“大喜利”也被称为Tonchi (頓智)。“頓”在日文和中文中都表示“突然”,而“智”的意思是“智力、洞察力或直觉”,该游戏天然地要求玩家给出令人眼前一亮、灵光一闪的创新响应;

2. “大喜利”的数据格式是高度合适的。不管是“图文到文”、“图到文”还是“文到文”,这些类型都天然地和目前多模特大模型的输入输出格式吻合,即输入为“图文”,输出仅为“文”。

3. “大喜利”数据质量高。创新是一件很难的事情,即使是人类,因此能作为“创新”相关的数据集并不多。鉴于该游戏长期在互联网上非常活跃(在中文社区中,一般也叫日式神吐槽/冷吐槽),而且带有大量点评数据,比如点赞数等等。正好积累了大量高质量人类创新幽默响应可以被用于研究。


性能结果展示

注意事项:

1. 幽默是主观的。任何一个幽默的响应都很难取悦每一个人 (人类的悲欢并不相通.jpg)。另外文化的差异、知识范围等原因也会造成不同人对不同响应的幽默理解。

2. 创新是困难的。如日本著名“大喜利”节目 IPPON 大獎賽中顶尖人类选手也很难确保每一次响应都能让评委满意。如果模型响应不满意,可以让它多试几次~

3. 幽默是多元的。一些常见的“调侃“、“讽刺“等手段是幽默的重要组成部分。不同的文化,甚至不同的人,对这些内容的容忍度不同,模型输出的内容可能对某些人会产生冒犯,敬请多多包容。本文、模型以及数据均只用于学术研究。 

首先展示的是在本文方法 CLoT 前后的创新响应对比:



接下来是一些精彩的模型响应合集:


激发创造力的思维方式Leap-of-Thought (LoT)

如下图(左)所示,传统的链式思考(Chain-of-Thought,CoT)方法是一种顺序思考过程,通过逐步推理指导大模型进行逻辑推理,每个后续的思考都建立在前一个思考的基础上。这一思考过程一定程度上确保了精确性和严谨性,但对于创造性问题表现不佳。
如下图(右)所示,本文探索了一种新的非顺序、创造性思维范式——跳跃思维 Leap-of-Thought(LoT)。这种范式涉及到思考关联性和知识跳跃。远距离的思考也被认为是联想。与 CoT 强调逻辑紧密的思维链不同,LoT 强调打破常规思维思考问题,激发模型的创造力。


通向LoT! 激发创造力的训练方法CLoT

基于所提出的 Oogiri-GO 数据集,本文探索出一套激发多模态大模型创造力的训练方法 CLoT。如下图所示,CLoT 包括两个阶段:
1. 关联性指令微调。在这一阶段,本文设计生成式和判别式模板,将 Oogiri-GO 数据集转换为指令微调的训练数据,用于训练多模态大模型,使得模型具备初步的创新响应能力。

2. 探索性自我调整。在这一阶段中,本文首先通过设计远关联的条件词,促使(1)中的模型生成多样化且与输入远关联的回答,并设计筛选流程,获得可靠的新 LoT 数据。随后,新数据被转换成指令微调的训练数据,用于进一步微调模型,具体地:

  • 探索性远程关联:这一步骤鼓励 LLM 在给定的弱关联条件下产生创新的回应。通过这种方式,LLM 学习在看似不相关的概念之间建立联系,从而生成多样化的创意内容。

  • 自我精炼:在探索性远程关联的基础上,通过设计一系列筛选流程,收集到的创意回应被用来进一步训练 LLM。这样做可以提高 LLM 在处理创造性任务时的表现,使其能够生成更高质量和多样性的内容。



性能评估

为了尽可能全面评估 CLoT,本文基于 Oogiri-GO 数据集,设计了选择题和排序题作为量化评估方式。实验结果表明,CLoT 能够显著提高多模态大模型(如 Qwen 和 CogVLM)的性能,显著超越包括 GPT4v 在内的先进模型。另外,与其他先进推理框架 CoT 等相比,在各项量化指标下也是有显著优势的。



此外,研究团队还通过用户调查,证实了 CLoT 帮助模型生成了更好的幽默内容。

研究团队还考虑到了 CLoT 的泛化性,用“看云猜物 CGG”和“发散思维测试 DAT”两个其他任务评估 CLoT 的性能,实验结果显示 CLoT 相对于基准模型具有更好的准确度,说明 CLoT 具备不错的泛化能力。DAT 是一种用于评估人类联想创造能力的测试。



总结

本文基于研究创造力的理想平台”大喜利”幽默创新响应游戏,来首次探讨了多模态大模型的创新响应能力。揭示了现有大模型在创造力、幽默能力在内的能力不足的现状,并提出缓解目前现状的提升方法。本工作已开源 https://github.com/sail-sg/CLoT,欢迎使用和引用。

更多阅读


#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:[email protected] 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编



🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


·
·
·

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
CVPR 2024 | 擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNetCVPR 2024 | 港理工联合OPPO提出统一且通用的视频分割大模型精度最高降幅60%!SOTA只是假象?CVPR 2024为你揭示CLIP和LLaVA-Next等模型“骗局”!玉树临盆成年人最好的学英语的方法顶刊TPAMI 2024!黄高团队提出EfficientTrain++:高效视觉骨干训练方法ICLR 2024 | 冻结住的CLIP仍可作为教师模型!港大提出全新开集动作识别模型命运动力学:降维打击ICLR 2024 | 跨领域准确进行零样本异常检测,浙大等提出AnomalyCLIPCVPR 2024 | 让视频姿态Transformer变得飞速,北大提出高效三维人体姿态估计框架HoTCVPR 2024 | 浙大提出近似平均方向求解器,快速扩散模型数值采样命运动力学:跃迁之毁CVPR 2024|文本或图像提示精准编辑 3D 场景,美图&信工所&北航&中大联合提出 3D 编辑方法 CustomNeRFICLR 2024 Oral | 应对随时间变化的分布偏移,西安大略大学等提出学习时序轨迹方法CVPR 2024 | 北大提出HoT:高效3D人体姿态估计新框架CVPR 2024|让图像扩散模型生成高质量360度场景,只需要一个语言模型陣前換將 兵家大忌 金廈海域 對撞危機【一週軍事雜談 】2024.02.20CVPR 2024 | 北大&电子科大提出RCBEVDet:毫米波雷达-相机多模态的感知架构CVPR 2024 | DeiT全新升级!DeiT-LT:针对长尾数据的改进模型CVPR 2024 | 通过细粒度人类反馈对齐数据,提高多模态大模型可信度CVPR 2024 | 字节提出视觉基础模型:ViTamin,实现多项SOTA!2024 初春 二月繁花~你应该在几点钟发布博客文章?CVPR 2024 | 无参数无训练也能大幅涨点!港城大等提出全新小样本3D分割模型CVPR 2024 | 知识蒸馏中的Logit标准化:辅助logit-based KD算法稳定涨点CVPR 2024 | 腾讯提出LORS:低秩残差结构,瘦身模型不掉点!CVPR 2024 | CLIP当成RNN!无需训练即可分割无数概念|牛津&谷歌新作CaRWWW 2024 | 阿里等提出GraphTranslator,将图模型对齐大语言模型大模型时代的计算机视觉!CVPR 2024线上论文分享会启动CVPR 2024 | 中科大&微软提出:迈向更统一的上下文视觉理解用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM大模型时代的计算机视觉!CVPR 2024线上分享会全日程公布CLIP当RNN用入选CVPR:无需训练即可分割无数概念|牛津大学&谷歌研究院CVPR‘24全程满分+最佳论文候选!上交大港中文等提出神经场网格模型三大定理2024 turbotax 最全最强攻略※※※※※※ 2024【新春对对碰】活动大合辑※※※※※※青春怀旧校园文学《青桃时代》连载 第四章 抵制霸凌 (五)专治大模型说胡话,精确率100%!华科等提出首个「故障token」检测/分类方法CVPR 2024 | 通用视觉新突破!UC伯克利提出首个无自然语言的纯视觉大模型CVPR 2024 | 和马赛克说拜拜!华为、清华等提出基于认知的万物超分大模型
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。