让大模型不再「巨无霸」,这是一份最新的大模型参数高效微调综述
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]。
作者首先给出了加性微调、选择性微调、重参数化微调和混合微调的定义:
加性微调通过在预训练模型的特定位置添加可学习的模块或参数,以最小化适配下游任务时模型的可训练的参数量。 选择性微调在微调过程中只更新模型中的一部分参数,而保持其余参数固定。相较于加性微调,选择性微调无需更改预训练模型的架构。 重参数化微调通过构建预训练模型参数的(低秩的)表示形式用于训练。在推理时,参数将被等价的转化为预训练模型参数结构,以避免引入额外的推理延迟。
多 PEFT 训练:挑战包括如何管理内存梯度和模型权重存储,以及如何设计一个有效的内核来批量训练 PEFT 等。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:[email protected]
微信扫码关注该文公众号作者
戳这里提交新闻线索和高质量文章给我们。
来源: qq
点击查看作者最近其他文章