Redian新闻
>
首个ICLR时间检验奖出炉!3万被引论文奠定图像生成范式!DALL-E 3/SD背后都靠它

首个ICLR时间检验奖出炉!3万被引论文奠定图像生成范式!DALL-E 3/SD背后都靠它

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba/扩散/多模态】交流群

添加微信:CVer5555,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球可以获得最新顶会/顶刊上的论文ideaCV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

白交 发自 凹非寺
转载自:量子位(QbitAI)

首届ICLR时间检验奖,颁向变分自编码器VAE

这篇跨越十一年的论文,给后续包括扩散模型在内的生成模型带来重要思想启发,才有了今天的DALL-E3、Stable Diffusion。此外,在音频、文本等领域都有广泛应用,是深度学习中的重要技术之一。

论文一作、VAE主要架构师Diederik Kingma可是妥妥大佬一枚。现在他在DeepMind担任研究科学家,曾是OpenAI创始成员、算法负责人,还是Adam优化器发明者。

网友纷纷表示祝福:Well Deserved,并称VAE改变了游戏规则。



值得一提的是,荣获亚军的论文也同样具有代表性,其参与者包括OpenAI首席科学家的Ilya、GAN的发明者Ian Goodfellow。

与此同时,杰出论文奖也悉数颁出。

首届ICLR时间检验奖

首先来看荣获时间检验奖的论文讲了什么。

概率建模是我们推理世界的最基本方法之一。这篇论文率先将深度学习与可扩展的概率推理(通过所谓的重参数化技巧进行摊平均值场变分推理)整合在一起,从而产生了变分自编码器(VAE)

委员会评价这项工作其持久价值在于它的优雅。用于开发 VAE 的原理加深了我们对深度学习和概率建模之间相互作用的理解,并引发了许多后续有趣的概率模型和编码方法的开发。

传统自编码器有个问题,它学到的隐向量是确定的、离散的,也没有很好的可解释性,而且不能随机采样隐向量来生成新样本。VAE就是为了解决这些问题而提出的。

VAE的核心思想是把隐向量看作是一个概率分布。具体而言,编码器(encoder)不直接输出一个隐向量,而是输出一个均值向量和一个方差向量,它们刻画了隐变量的高斯分布。这样一来,我们就可以从这个分布中随机采样隐向量,再用解码器(decoder)生成新图片了。

但是问题在于,这个隐变量的后验分布很复杂,难以直接求解。

所以VAE的第二个关键思想是用一个简单分布(例如高斯分布)去近似真实的后验分布,并通过优化一个下界(ELBO)来训练模型。

这个下界可以分解为两部分:一部分让生成的图片更接近原始图片,另一部分让近似后验分布更接近先验分布(例如标准高斯分布)。直观地说,这相当于在重构输入图片的同时,对隐变量分布进行了一个“规范化”。

为了让这个下界能通过梯度下降来优化,VAE论文提出了一个重参数技巧,它把从分布中采样的过程改写成从标准高斯分布采样并进行线性变换。这样梯度就可以直接反向传播了。

这样一来,VAE可以学习到数据的隐空间表示,并用它来生成新样本。和传统自编码器相比,VAE学到的隐变量具有更好的可解释性和泛化能力。

在实验部分,论文在MNIST数据集上展示了VAE生成数字图像的效果。

而这篇研究背后的作者同样来头不小。

Diederik P. Kingma博士毕业于阿姆斯特丹大学。曾是OpenAI创始成员之一、算法团队负责人,专注于基础研究,比如用于生成模型的算法。

离开OpenAI之后,他来到谷歌,参与到谷歌大脑、DeepMind团队研究中去,他主导了一系列生成模型的研究,包括文本、图像和视频。除了VAE之外,他也是Adam优化器、Glow等发明者。谷歌学术被引超20万次。

除此之外,他还有着天使投资人这一身份。

不过目前从Twitter介绍上看,他貌似已经离开DeepMind。

AI大牛Max Welling目前是阿姆斯特丹大学机器学习研究主席,也是MSR杰出科学家。

另外,同样来自2013年的研究,来自谷歌、纽约大学、蒙特利尔大学的论文Intriguing properties of neural networks获得了亚军。

里面还有不少熟悉面孔,比如那个消失的OpenAI联创兼首席科学家Ilya Sutskever 、GAN发明者Ian Goodfellow

ICLR委员对这篇论文评价如下:

随着深度神经网络在实际应用中的日益普及,了解神经网络何时以及如何出现不良行为显得尤为重要。这篇论文强调了这样一个问题,即神经网络很容易受到输入中几乎难以察觉的微小变化的影响。这一想法有助于催生对抗性攻击(试图愚弄神经网络)和对抗性防御(训练神经网络使其不被愚弄)领域。

杰出论文奖

与此同时,本届ICLR杰出论文奖也悉数颁出,共有5篇优秀论文获奖、11篇论文获得荣誉提名。

那么主要来看看这5篇论文讲了什么。

Generalization in diffusion models arises from geometry-adaptive harmonic representations

这篇来自纽约大学、法兰西学院的研究,从实验和理论研究了扩散模型中的记忆和泛化特性。作者根据经验研究了图像生成模型何时从记忆输入转换到泛化机制,并通过 “几何自适应谐波表征 ”与谐波分析的思想建立联系,进一步从建筑归纳偏差的角度解释了这一现象。

这篇论文涵盖了我们对视觉生成模型理解中的一个关键缺失部分,很可能会对该领域未来的重要理论研究有所启发。

Learning Interactive Real-World Simulators

研究机构来自UC伯克利、Google DeepMind、MIT、阿尔伯塔大学。汇集多个来源的数据来训练机器人基础模型是一个长期的宏伟目标。由于不同的机器人具有不同的感知-运动界面,这阻碍了大规模数据集的训练,因此带来了巨大的挑战。这项名为 “UniSim ”的工作是朝着这个方向迈出的重要一步,也是一项工程壮举,它使用基于视觉感知和控制文字描述的统一界面来聚合数据,并利用视觉和语言领域的最新发展,从数据中训练机器人模拟器。

Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors

来自特拉维夫大学、IBM的研究深入探讨了最近提出的状态空间模型和Transformer架构对长期顺序依赖关系的建模能力。令人惊讶的是,作者发现从头开始训练Transformer模型会导致对其性能的低估,并证明通过预训练和微调设置可以获得巨大的收益。

这篇论文执行得非常出色,在注重简洁性和系统性见解方面堪称典范。

Protein Discovery with Discrete Walk-Jump Sampling

基因泰克、纽约大学的研究解决了基于序列的抗体设计问题,这是蛋白质序列生成模型的一个重要应用。作者引入了一种创新而有效的新建模方法,专门用于处理离散蛋白质序列数据的问题。除了在硅学中验证该方法外,作者还进行了大量湿实验室实验,在体外测量抗体结合亲和力,证明了其生成方法的有效性。

Vision Transformers Need Registers

来自Meta等机构的研究,识别了vision transformer网络特征图中的伪影,其特点是低信息量背景区域中的高规范Tokens。作者对出现这种情况的原因提出了关键假设,并提供了一个简单而优雅的解决方案,利用额外的register tokens来解决这些伪影问题,从而提高模型在各种任务中的性能。从这项工作中获得的启示也会对其他应用领域产生影响。

这篇论文写得非常好,提供了一个开展研究的绝佳范例—发现问题,了解问题发生的原因,然后提供解决方案。

除此之外,本届会议共收到了7262 篇提交论文,接收2260篇,整体接收率约为 31%。此外Spotlights论文比例为 5%,Oral论文比例为 1.2%。

参考链接:
[1]https://arxiv.org/abs/1312.6114

[2]https://x.com/yisongyue/status/1787910669477757207
[3]https://blog.iclr.cc/2024/05/06/iclr-2024-outstanding-paper-awards/
[4]https://blog.iclr.cc/2024/05/07/iclr-2024-test-of-time-award/

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集


Mamba、多模态和扩散模型交流群成立

扫描下方二维码,或者添加微信:CVer5555,即可添加CVer小助手微信,便可申请加入CVer-Mamba、多模态学习或者扩散模型微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。


一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者扩散模型+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer5555,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!


扫码加入星球学习


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Mamba遇见扩散模型!DiM:无需微调,高分辨图像生成更高效!更美图像生成、直出分钟级视频,国产自研DiT架构的越级之旅不要瞧不起几十块的内衣,身材、气质都靠它撑!《丹青如画》&《藏星》7262篇提交,ICLR 2024爆火,两篇国内论文获杰出论文提名小长假必入清单,哄娃解馋都靠它了!顺滑好喝还养胃,每次催着儿子多喝点UCSD背刺UCLA成为最受申请者欢迎分校,UC系申请人数持续突破20万!Meta在WhatsApp中加入实时AI图像生成功能柳杉扁柏孔雀松,花粉症源露'尊容'Kimi论文自曝推理架构,80%流量都靠它承担人工智能通过单张雷达图像生成3D城市地图CVPR、AAAI、ICLR 2024 满分论文出炉!让9万女生疯抢的【纸片裤】到底是什么?很多姐妹都靠它逆袭成“腿精”!Stability AI让更多的开发者可以访问其下一代文本到图像生成器ICML 2024 | 川大提出外部引导的深度聚类新范式,大幅提升CLIP图像聚类性能段永平2024上半年经典分享:用10年20年去做“思维实验”,看得懂、经得起时间检验的好公司,茅台算一个首个ICLR时间检验奖出炉!3万被引论文奠定图像生成范式,DALL-E 3/SD背后都靠它北大字节开辟图像生成新范式!超越Sora核心组件DiT,不再预测下一个token超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像,中科大哈工大度小满出品CVPR、AAAI、ICLR 2024满分论文出炉!二月的辛夷「个性化」图像生成时代来了!六大顶尖高校联手发布全新Gen4Gen框架国家药监局关于将牙膏pH值的检验方法等15项检验方法纳入化妆品安全技术规范(2015年版)的通告可控图像生成最新综述!北邮开源20页249篇文献,包揽Text-to-Image Diffusion领域各种「条件」ICLR 2024 杰出论文奖揭晓!两篇国内论文获荣誉提名ICLR 2024 | AnomalyCLIP:零样本异常检测新范式奠基性VAE荣获ICLR首届「时间检验奖」!国内学者获2篇杰出论文提名英伟达摘两篇最佳论文、浙大周昆获时间检验奖,SIGGRAPH 2024奖项出炉把整个地球装进神经网络,北航团队推出全球遥感图像生成模型可控图像生成最新综述!北邮开源20页249篇文献!《何三哭》读后——by 小花荣月英区艾美奖出炉!今年的英美剧追剧指南又有了!秦昊的情感观;周星驰星爷的遗憾;老公给孕肚刷油去妊娠纹最新!何恺明团队发布:打破自回归图像生成瓶颈,告别矢量量化CEO突然跑了!图像生成头部玩家Stability AI错在这……
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。