Redian新闻
>
Transformer登上Nature子刊!

Transformer登上Nature子刊!

公众号新闻

Transformer模型最初由Google的研究人员在2017年提出,它是一种基于自注意力机制的深度学习模型,用于处理序列数据。不仅彻底改变了NLP领域,还在CV领域做出了一些开创性的工作。与卷积神经网络(CNN)相比,视觉 Transformer(ViT)依靠出色的建模能力,在 ImageNet、COCO 和 ADE20k 等多个基准上取得了非常优异的性能。随着Transformer的成功,研究人员一直在探索如何进一步改进和扩展这一架构。


5月15日,我们邀请到人工智能PHD,曾获某一区TOP期刊最佳论文奖Henry老师,为我们带来——荣登Nature!百变之王Transformer的进阶之路,深入详解Transformer最新工作进展及技术原理!


扫码免费参与直播

领导师推荐100+篇transformer必读论文&PPT原稿




部分transformer论文&ppt展示




导师简介:Henry老师


-人工智能PHD

-共发表20余篇SCI国际期刊和EI会议论文,包括一区期刊ISPRS Journal of Photogrammetry and Remote Sensing (影响因子12.7)等

-论文曾获某一区Top期刊年度最佳论文奖(为博士所在高校校史上首位获此殊荣的学者),谷歌学术被引1500余次

-研究领域:深度学习及其在计算机视觉、遥感图像处理和离岸可再生能源三大方向的应用,特别是CNN、注意力机制和视觉Transformer在图像分割、超分辨率等




直播大纲


1. Vision Transformer基础

2. Efficient ViT和加速技术

3. 自监督ViT技术

4. 多模态大模型 



扫码免费参与直播

领导师推荐100+篇transformer必读论文&PPT原稿



Transformer模型的核心设计理念可以概括为以下几点:


1. 自注意力(Self-Attention)机制

-核心概念:Transformer模型的基础是自注意力机制,它允许模型在处理序列(如文本)时,对序列中的每个元素计算其与序列中其他元素的关联度。这种机制使得模型能够捕捉到序列内长距离依赖关系。

-优势:相比于之前的RNN和LSTM,自注意力机制能够在并行处理时有效地处理长距离依赖问题,显著提高了处理速度和效率。


2. 多头注意力(Multi-Head Attention)

-设计:在自注意力的基础上,Transformer引入了多头注意力机制,通过将注意力机制“拆分”成多个头并行运行,模型可以从不同的子空间学习信息。

-目的:这种设计使模型能够更好地理解语言的多种复杂关系,比如同义词和反义词关系、语法和语义关系等。

3. 位置编码(Positional Encoding)

-问题:由于Transformer完全基于注意力机制,缺乏序列的位置信息。

-解决方案:通过向输入序列的每个元素添加位置编码,模型能够利用这些信息来了解单词在句子中的位置关系。位置编码是与词嵌入相加的,以保留位置信息。

4. 编码器-解码器架构

-架构:Transformer模型包含编码器和解码器两部分。编码器用于处理输入序列,解码器则基于编码器的输出和之前的输出生成目标序列。

-特点:每个编码器和解码器层都包含多头注意力机制和前馈神经网络,通过残差连接和层归一化来优化训练过程。

5. 可扩展性和效率

-并行处理:与RNN和LSTM等序列模型相比,Transformer的自注意力机制允许对整个序列进行并行处理,显著提高了训练和推理的速度。

-适用范围:Transformer模型不仅适用于NLP任务,还被扩展到其他领域,如计算机视觉、音频处理等。

继DeepMind的新设计MoD大幅提升了 Transformer 效率后,谷歌又双叒开始爆改了!


与之前荣登Nature子刊的life2vec不同,谷歌的新成果Infini-attention机制(无限注意力)将压缩内存引入到传统的注意机制中,并在单个Transformer块中构建了掩码局部注意力和长期线性注意力机制。


这让Transformer架构大模型在有限的计算资源里处理无限长的输入,在内存大小上实现114倍压缩比。(相当于一个存放100本书的图书馆,通过新技术能存储11400本书)


扫码免费参与直播

领导师推荐100+篇transformer必读论文&PPT原稿
























ViT基础

Vision Transformer(ViT)是一种基于Transformer架构的图像处理模型。它将输入图像分割成固定大小的patch,并将每个patch转换成向量表示,然后送入Transformer模型进行处理。通过自注意力机制,ViT能够有效地捕获图像中的全局和局部信息,从而在图像分类、语义分割和目标检测等任务上取得优异表现。

图1. Vision Transformer架构


Efficient Transformer和加速技术

尽管ViT在图像处理任务上取得了显著成绩,但其计算量较大,训练和推理速度较慢。为了解决这一问题,研究人员提出了一系列加速技术,如窗口注意力机制、多尺度处理、稀疏注意力等。此外,Efficient Transformer模型也在降低计算复杂度的同时保持了较好的性能,为ViT的实际应用提供了可能。

图2. Swin Transformer中的Window Attention


Transformer自监督学习

除了监督学习,Transformer模型还可以通过自监督学习进行预训练。在自监督学习中,模型通过利用输入数据的内在结构进行训练,无需人工标注的标签。这种方法不仅能够提高模型的泛化能力,还能够有效利用大规模未标记的数据进行预训练,为模型的迁移学习提供了更好的基础。

图3. 无监督学习中的对比学习


多模态LLM

除了单一模态的图像处理,Transformer模型还可以处理多模态数据,如文本和图像的联合处理。通过引入多模态LLM(Language-Image Models),模型能够同时理解文本和图像之间的关系,从而在视觉问答、图像标注等任务上取得更好的效果。

图4. Flamingo架构示意图

图5. PaLM-E架构示意图


对于想要发表论文,对科研感兴趣或正在为科研做准备的同学,想要快速发论文有两点至关重


对于还没有发过第一篇论文,还不能通过其它方面来证明自己天赋异禀的科研新手,学会如何写论文、发顶会的重要性不言而喻。


发顶会到底难不难?近年来各大顶会的论文接收数量逐年攀升,身边的朋友同学也常有听闻成功发顶会,总让人觉得发顶会这事儿好像没那么难!

但是到了真正实操阶段才发现,并不那么简单,可能照着自己的想法做下去并不能写出一篇好的论文、甚至不能写出论文。掌握方法,有人指点和引导很重要!

还在为创新点而头秃的CSer,还在愁如何写出一篇好论文的科研党,一定都需要来自顶会论文作者、顶会审稿人的经验传授和指点。

很可能你卡了很久的某个点,在和学术前辈们聊完之后就能轻松解决。


扫描二维码
与大牛导师一对一meeting


文末福利





给大家送一波大福利!我整理了100节计算机全方向必学课程,包含CV&NLP&论文写作经典课程,限时免费领!



立即扫码 赠系列课程

-END-





微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
《歌德堡变奏曲1548》Transformer+时间序列登上Nature子刊!高效涨点!用Transformer模型发Nature子刊(文末送书)清华系细胞大模型登Nature子刊!能对人类2万基因同时建模,代码已开源谁将替代 Transformer?OpenAI官宣开源Transformer Debugger!不用写代码,人人可以破解LLM黑箱人人都能当周杰伦!Suno作曲,ChatGPT写词,网友用Transformer造出神曲!登上Nature子刊:我国学者揭示中国股市波动对心理健康和心血管疾病的影响Mamba架构第一次做大!混合Transformer,打败Transformer纯加法Transformer!结合脉冲神经网络和Transformer的脉冲Transformer | NeurIPS 2023中文实录!黄仁勋集齐Transformer论文七大作者,对话一小时,干货满满Transformer成最大赢家!登上Nature子刊Nature的编辑们将大规模罢工!或将导致Nature在155年间首次发生缺刊!并且除了Nature,还有超60本期刊将联合罢工吕洪来:欺世盗名的“人民政府”多功能RNA分析,百度团队基于Transformer的RNA语言模型登Nature子刊【五律】聽陳敏《昨日重現》性能突破Transformer!Mamba引爆AI圈Transformer仍是2024发论文神器突破!AI机器人拥有嗅觉!仿生嗅觉芯片研究登上Nature子刊美国的房产经纪人会都失业吗?开源日报 | 华为腾讯相爱相杀;Redis不再 “开源”;老黄集齐Transformer论文七大作者;“中国大模型第一城”争夺战YOCO:打破传统Decoder-only架构,内存消耗仅为Transformer的六分之一CNN、Transformer、Uniformer之外,我们终于有了更高效的视频理解技术7人创业、1人投敌!Transformer 八子谷歌坐冷板凳5年再成老黄座上宾OpenAI公关跳起来捂他嘴!Transformer作者公开承认参与Q*!现场围观 | 黄仁勋对话Transformer论文作者:世界该给Tranformer翻篇了刚刚!JNK信号通路再发Nature子刊!IF=14.7分!Mamba和Transformer合体!Jamba来了:超越Transformer!黄仁勋集齐Transformer论文七大作者,对话一小时,干货满满Transformer要变Kansformer?用了几十年的MLP迎来挑战者KAN《美丽家园》&《谁来剪月光》Meta革命新架构掀翻Transformer!无限上下文处理!超越 Transformer 与 Mamba,Meta 联合斯坦福等高校推出最强架构 TTTTransformer解码真实场景!Meta推出70M参数SceneScript模型为什么Transformer一般使用LayerNorm?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。