e*r
2 楼
请问最稳定的,可以一年不用重新开机的router是哪个? 谢谢。
I*a
3 楼
抗体是FITC标记的,在普通荧光显微镜下,看得挺好的,想到共聚焦上拍点漂
亮的照片
,结果照片很差劲,模模糊糊的。比普通荧光显微镜下都差很多,是什么原因?
共聚焦用的比较少,没经验。
zeiss LSM 510
先谢谢。
亮的照片
,结果照片很差劲,模模糊糊的。比普通荧光显微镜下都差很多,是什么原因?
共聚焦用的比较少,没经验。
zeiss LSM 510
先谢谢。
m*5
6 楼
有具体照片么?
荧光集团的质量也很关键
激发光波长共聚焦要比普通荧光显微镜集中得多,我曾经遇到过一个GFP突变后在共聚
焦下荧光很弱但在普通荧光显微镜下没什么问题的情况。
另外,你们的共聚焦的分辨率调了么?是不是不小心默认在了低分辨率下?
荧光集团的质量也很关键
激发光波长共聚焦要比普通荧光显微镜集中得多,我曾经遇到过一个GFP突变后在共聚
焦下荧光很弱但在普通荧光显微镜下没什么问题的情况。
另外,你们的共聚焦的分辨率调了么?是不是不小心默认在了低分辨率下?
I*g
10 楼
可能编译器对这个behavior是 undefined的吧。不一定按顺序放,编译器可能做点优化
什么的
什么的
w*8
11 楼
我觉得e2000也挺好,买来半年至今还没重启过
z*u
12 楼
confocal 的灵敏度比普通wide field fluorescent 低不少。
很多普通显微镜下看得很清除的到confocal下变弱很多。常见。
很多普通显微镜下看得很清除的到confocal下变弱很多。常见。
d*e
13 楼
Here is a solution I found:
#include
void sub(int *a) {
int b;
if (&b > a) {
printf("Stack grows up.");
} else {
printf("Stack grows down.");
}
}
main () {
int a;
sub(&a);
}
#include
void sub(int *a) {
int b;
if (&b > a) {
printf("Stack grows up.");
} else {
printf("Stack grows down.");
}
}
main () {
int a;
sub(&a);
}
f*e
14 楼
共聚焦的灵敏度应该不会比WIDEFIELD 差很多, 具体没比较过, 也很难比, 因为光源,
光路,成像系统都不一样.CONFOCAL 对ALIGNMENT的要求很高, ALIGNMENT 包括激光,
PINHOLE,DICRHOIC MIRROR.
如果你的ALIGNMENT没问题的话, 你可以把PINHOLE打大, 可以提高信号强度. 还可以
AVERAGE 多FRAME 可以提高S/N.
【在 I***a 的大作中提到】
: 抗体是FITC标记的,在普通荧光显微镜下,看得挺好的,想到共聚焦上拍点漂
: 亮的照片
: ,结果照片很差劲,模模糊糊的。比普通荧光显微镜下都差很多,是什么原因?
: 共聚焦用的比较少,没经验。
: zeiss LSM 510
: 先谢谢。
光路,成像系统都不一样.CONFOCAL 对ALIGNMENT的要求很高, ALIGNMENT 包括激光,
PINHOLE,DICRHOIC MIRROR.
如果你的ALIGNMENT没问题的话, 你可以把PINHOLE打大, 可以提高信号强度. 还可以
AVERAGE 多FRAME 可以提高S/N.
【在 I***a 的大作中提到】
: 抗体是FITC标记的,在普通荧光显微镜下,看得挺好的,想到共聚焦上拍点漂
: 亮的照片
: ,结果照片很差劲,模模糊糊的。比普通荧光显微镜下都差很多,是什么原因?
: 共聚焦用的比较少,没经验。
: zeiss LSM 510
: 先谢谢。
s*y
16 楼
a*n
17 楼
这个stack 是指函数调用的堆栈, 当然需要用函数确定了
这个题本身就是问被调函数和主调函数的栈的顺序
每一个frame里面放的都是当前的函数需要的局部变量和环境参数,具体一个函数内的
局部变量的顺序编译器相关
这个题本身就是问被调函数和主调函数的栈的顺序
每一个frame里面放的都是当前的函数需要的局部变量和环境参数,具体一个函数内的
局部变量的顺序编译器相关
l*1
23 楼
楼主是个半路出家搞Laser scanning confocal microscope (LSCM) 的?
好好看下红宝书/圣经吧
//onlinelibrary.wiley.com/doi/10.1002/0471142727.mb1410s44/abstract
free download link is here:
//webdoc.nyumc.org/nyumc/files/sun-lab/attachments/CPMB.Ch.14.Situ.IHC.pdf
its pp146
UNIT 14.11
Basic Confocal Microscopy
by Carolyn L. Smith
1National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
and
//www.olympusconfocal.com/theory/signaltonoise.html
//micro.magnet.fsu.edu/primer/techniques/confocal/index.html
【在 I***a 的大作中提到】
: 这是图,
: 处理过,差不多了
好好看下红宝书/圣经吧
//onlinelibrary.wiley.com/doi/10.1002/0471142727.mb1410s44/abstract
free download link is here:
//webdoc.nyumc.org/nyumc/files/sun-lab/attachments/CPMB.Ch.14.Situ.IHC.pdf
its pp146
UNIT 14.11
Basic Confocal Microscopy
by Carolyn L. Smith
1National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
and
//www.olympusconfocal.com/theory/signaltonoise.html
//micro.magnet.fsu.edu/primer/techniques/confocal/index.html
【在 I***a 的大作中提到】
: 这是图,
: 处理过,差不多了
s*j
25 楼
你这个外行. 搞confocal的都知道圣经是
james pawley 编的 handbook of biological confocal microscopy
Maryland
【在 l**********1 的大作中提到】
: 楼主是个半路出家搞Laser scanning confocal microscope (LSCM) 的?
: 好好看下红宝书/圣经吧
: //onlinelibrary.wiley.com/doi/10.1002/0471142727.mb1410s44/abstract
: free download link is here:
: //webdoc.nyumc.org/nyumc/files/sun-lab/attachments/CPMB.Ch.14.Situ.IHC.pdf
: its pp146
: UNIT 14.11
: Basic Confocal Microscopy
: by Carolyn L. Smith
: 1National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
james pawley 编的 handbook of biological confocal microscopy
Maryland
【在 l**********1 的大作中提到】
: 楼主是个半路出家搞Laser scanning confocal microscope (LSCM) 的?
: 好好看下红宝书/圣经吧
: //onlinelibrary.wiley.com/doi/10.1002/0471142727.mb1410s44/abstract
: free download link is here:
: //webdoc.nyumc.org/nyumc/files/sun-lab/attachments/CPMB.Ch.14.Situ.IHC.pdf
: its pp146
: UNIT 14.11
: Basic Confocal Microscopy
: by Carolyn L. Smith
: 1National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
l*1
27 楼
那不是没免费下载的点吗 megaupload dead了后
摘自那本CLSM 圣经 free download ok now.
its pp158:
Image processing
Confocal images can be enhanced by
an image processing technique known as
“deconvolution” or “restoration” (Cannell
et al., 2006; Holmes et al., 2006). The purpose
of deconvolution is to remove the blur caused
by diffraction. By measuring or approximating
the point spread function of the optics, one
can mathematically “work backwards” to account
for the distorting effects of the optics on
the true image. Deconvolution improves contrast
and resolution and reduces noise. Several
algorithms for deconvolution have been devised
that differ in computational intensity and
the extent to which they are quantitative (i.e.,
retain intensity information). The importance
of eliminating noise for quantitative imaging
with confocal microscopy is discussed in detail
by Pawley (2006).Although deconvolution
is the most robust method for reducing noise,
it is computationally intensive. An alternative
and quicker method for reducing noise is to
perform a linear deblurring operation (Russ,
2002).
【在 s*****j 的大作中提到】
: 你这个外行. 搞confocal的都知道圣经是
: james pawley 编的 handbook of biological confocal microscopy
:
: Maryland
摘自那本CLSM 圣经 free download ok now.
its pp158:
Image processing
Confocal images can be enhanced by
an image processing technique known as
“deconvolution” or “restoration” (Cannell
et al., 2006; Holmes et al., 2006). The purpose
of deconvolution is to remove the blur caused
by diffraction. By measuring or approximating
the point spread function of the optics, one
can mathematically “work backwards” to account
for the distorting effects of the optics on
the true image. Deconvolution improves contrast
and resolution and reduces noise. Several
algorithms for deconvolution have been devised
that differ in computational intensity and
the extent to which they are quantitative (i.e.,
retain intensity information). The importance
of eliminating noise for quantitative imaging
with confocal microscopy is discussed in detail
by Pawley (2006).Although deconvolution
is the most robust method for reducing noise,
it is computationally intensive. An alternative
and quicker method for reducing noise is to
perform a linear deblurring operation (Russ,
2002).
【在 s*****j 的大作中提到】
: 你这个外行. 搞confocal的都知道圣经是
: james pawley 编的 handbook of biological confocal microscopy
:
: Maryland
I*a
28 楼
不是专门搞LSCM的,
只想搞几张张好点的图,
Maryland
【在 l**********1 的大作中提到】
: 楼主是个半路出家搞Laser scanning confocal microscope (LSCM) 的?
: 好好看下红宝书/圣经吧
: //onlinelibrary.wiley.com/doi/10.1002/0471142727.mb1410s44/abstract
: free download link is here:
: //webdoc.nyumc.org/nyumc/files/sun-lab/attachments/CPMB.Ch.14.Situ.IHC.pdf
: its pp146
: UNIT 14.11
: Basic Confocal Microscopy
: by Carolyn L. Smith
: 1National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
只想搞几张张好点的图,
Maryland
【在 l**********1 的大作中提到】
: 楼主是个半路出家搞Laser scanning confocal microscope (LSCM) 的?
: 好好看下红宝书/圣经吧
: //onlinelibrary.wiley.com/doi/10.1002/0471142727.mb1410s44/abstract
: free download link is here:
: //webdoc.nyumc.org/nyumc/files/sun-lab/attachments/CPMB.Ch.14.Situ.IHC.pdf
: its pp146
: UNIT 14.11
: Basic Confocal Microscopy
: by Carolyn L. Smith
: 1National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
l*1
31 楼
那本CLSM圣经 free download ok now
its pp157
Illumination intensity
Fluorescence emission increases linearly
with illumination intensity up to a level at
which emission saturates. Optimal signal-tobackground
and signal-to-noise ratios are obtained
with illumination levels well below saturation
(Tsien et al., 2006). The illumination
intensity on a laser-scanning microscope can
be adjusted by operating the laser at submaximal
power and by inserting neutral-density
filters into the light path or varying the transmission
through the AOTF. In general, the best
images are obtained with illumination levels
that are as high as possible without producing
unacceptable rates of photobleaching.
Reducing noise
Confocal images are inherently noisy due
to the statistics of photon emission and limited
quantum efficiency of the detectors (Pawley,
2006). Improved signal-to-noise ratios can be
attained by scanning the specimen at a slower
rate or by scanning multiple times and averaging
the signals. Current LSCMs allow
individual lines in the image to be scanned
repeatedly and averaged. Line averaging generally
produces sharper images than frame averaging
(which averages full frames) because
there is less risk of blurring due to movements
or changes in the specimen.Averaging reduces
noise by a factor of (1/
√
n, where n is the
number of frames or lines averaged), but more
scans will result in more bleaching. Residual
noise can be reduced by image processing (see
below).
Image processing
Confocal images can be enhanced by
an image processing technique known as
“deconvolution” or “restoration” (Cannell
et al., 2006; Holmes et al., 2006). The purpose
of deconvolution is to remove the blur caused
by diffraction. By measuring or approximating
the point spread function of the optics, one
can mathematically “work backwards” to account
for the distorting effects of the optics on
the true image. Deconvolution improves contrast
and resolution and reduces noise. Several
algorithms for deconvolution have been devised
that differ in computational intensity and
the extent to which they are quantitative (i.e.,
retain intensity information). The importance
of eliminating noise for quantitative imaging
with confocal microscopy is discussed in detail
by Pawley (2006).Although deconvolution
is the most robust method for reducing noise,
it is computationally intensive. An alternative
and quicker method for reducing noise is to
perform a linear deblurring operation (Russ,
2002).
【在 I***a 的大作中提到】
: 问题别人只是模糊一点,
: 我的都是噪点啊
its pp157
Illumination intensity
Fluorescence emission increases linearly
with illumination intensity up to a level at
which emission saturates. Optimal signal-tobackground
and signal-to-noise ratios are obtained
with illumination levels well below saturation
(Tsien et al., 2006). The illumination
intensity on a laser-scanning microscope can
be adjusted by operating the laser at submaximal
power and by inserting neutral-density
filters into the light path or varying the transmission
through the AOTF. In general, the best
images are obtained with illumination levels
that are as high as possible without producing
unacceptable rates of photobleaching.
Reducing noise
Confocal images are inherently noisy due
to the statistics of photon emission and limited
quantum efficiency of the detectors (Pawley,
2006). Improved signal-to-noise ratios can be
attained by scanning the specimen at a slower
rate or by scanning multiple times and averaging
the signals. Current LSCMs allow
individual lines in the image to be scanned
repeatedly and averaged. Line averaging generally
produces sharper images than frame averaging
(which averages full frames) because
there is less risk of blurring due to movements
or changes in the specimen.Averaging reduces
noise by a factor of (1/
√
n, where n is the
number of frames or lines averaged), but more
scans will result in more bleaching. Residual
noise can be reduced by image processing (see
below).
Image processing
Confocal images can be enhanced by
an image processing technique known as
“deconvolution” or “restoration” (Cannell
et al., 2006; Holmes et al., 2006). The purpose
of deconvolution is to remove the blur caused
by diffraction. By measuring or approximating
the point spread function of the optics, one
can mathematically “work backwards” to account
for the distorting effects of the optics on
the true image. Deconvolution improves contrast
and resolution and reduces noise. Several
algorithms for deconvolution have been devised
that differ in computational intensity and
the extent to which they are quantitative (i.e.,
retain intensity information). The importance
of eliminating noise for quantitative imaging
with confocal microscopy is discussed in detail
by Pawley (2006).Although deconvolution
is the most robust method for reducing noise,
it is computationally intensive. An alternative
and quicker method for reducing noise is to
perform a linear deblurring operation (Russ,
2002).
【在 I***a 的大作中提到】
: 问题别人只是模糊一点,
: 我的都是噪点啊
l*1
37 楼
Mounting the specimen
Selection of a mounting medium should
take into account the type of microscope objective
that will be used to observe the specimen
(see section on Microscope objectives).
In order for an objective to perform optimally,
the mounting medium should have the same
refractive index (RI) as the objective immersion
medium. Mismatches in the refractive indices
produce spherical aberration leading to
loss of light at the detector, as well as decreased
z-axis resolution and incorrect depth
discrimination. Image deterioration caused by
spherical aberration increases with depth into
the specimen; therefore, matching the immersion
and mounting medium refractive indices
is particularly important for thick specimens.
The refractive indices of some commonly used
mounting media are listed in Table 14.11.2.
Mounting media that have refractive indices
close to that of immersion oil (n = 1.51)
include DPX (n = 1.5; ProSciTech) and Permount
(n=1.52; ProSciTech).However, specimens
must be dehydrated prior to mounting
in these media, and dehydration causes
shrinkage and distortion. Moreover, some fluorophores
cannot withstand dehydration. Cells
retain their three dimensional shapes when
they are kept in physiological saline (PBS) or
a mixture of PBS and glycerol (Bacallao et al.,
2006). If the specimen is to be mounted under
a coverglass, it may be necessary to support the
coverglass to avoid damaging the specimen.
Addition of an antioxidant (antifade agent)
to themountingmedium helps to alleviate photobleaching
of synthetic fluorophores such as
those used for immunocytochemistry. One of
the best antifade agents is 100 mg/ml 1,4-
diazabicyclo[2,2,2]octane (DABCO; Sigma;
Bacallao et al., 2006). n-Propyl gallate (Giloh
and Sedat, 1982) and p-phenylenediamine
(PPD; Johnson et al., 1982) are also effective
antifade agents, but the former may cause
dimming of the fluorescence while the latter
may damage the specimen (Bacallao et al.,
2006). A wide variety of mounting media is
available from commercial sources (Biomeda,
Electron Microscopy Sciences, ProSciTech,
Molecular Probes, Vector Laboratories), and
many of these contain antifade agents. It is
wise to check with the fluorophore provider for
recommendations about which mounting media
and antifade agents to use. Antioxidants
do not reduce photobleaching of fluorescent
proteins.
看图
【在 I***a 的大作中提到】
: 抗体是FITC标记的,在普通荧光显微镜下,看得挺好的,想到共聚焦上拍点漂
: 亮的照片
: ,结果照片很差劲,模模糊糊的。比普通荧光显微镜下都差很多,是什么原因?
: 共聚焦用的比较少,没经验。
: zeiss LSM 510
: 先谢谢。
Selection of a mounting medium should
take into account the type of microscope objective
that will be used to observe the specimen
(see section on Microscope objectives).
In order for an objective to perform optimally,
the mounting medium should have the same
refractive index (RI) as the objective immersion
medium. Mismatches in the refractive indices
produce spherical aberration leading to
loss of light at the detector, as well as decreased
z-axis resolution and incorrect depth
discrimination. Image deterioration caused by
spherical aberration increases with depth into
the specimen; therefore, matching the immersion
and mounting medium refractive indices
is particularly important for thick specimens.
The refractive indices of some commonly used
mounting media are listed in Table 14.11.2.
Mounting media that have refractive indices
close to that of immersion oil (n = 1.51)
include DPX (n = 1.5; ProSciTech) and Permount
(n=1.52; ProSciTech).However, specimens
must be dehydrated prior to mounting
in these media, and dehydration causes
shrinkage and distortion. Moreover, some fluorophores
cannot withstand dehydration. Cells
retain their three dimensional shapes when
they are kept in physiological saline (PBS) or
a mixture of PBS and glycerol (Bacallao et al.,
2006). If the specimen is to be mounted under
a coverglass, it may be necessary to support the
coverglass to avoid damaging the specimen.
Addition of an antioxidant (antifade agent)
to themountingmedium helps to alleviate photobleaching
of synthetic fluorophores such as
those used for immunocytochemistry. One of
the best antifade agents is 100 mg/ml 1,4-
diazabicyclo[2,2,2]octane (DABCO; Sigma;
Bacallao et al., 2006). n-Propyl gallate (Giloh
and Sedat, 1982) and p-phenylenediamine
(PPD; Johnson et al., 1982) are also effective
antifade agents, but the former may cause
dimming of the fluorescence while the latter
may damage the specimen (Bacallao et al.,
2006). A wide variety of mounting media is
available from commercial sources (Biomeda,
Electron Microscopy Sciences, ProSciTech,
Molecular Probes, Vector Laboratories), and
many of these contain antifade agents. It is
wise to check with the fluorophore provider for
recommendations about which mounting media
and antifade agents to use. Antioxidants
do not reduce photobleaching of fluorescent
proteins.
看图
【在 I***a 的大作中提到】
: 抗体是FITC标记的,在普通荧光显微镜下,看得挺好的,想到共聚焦上拍点漂
: 亮的照片
: ,结果照片很差劲,模模糊糊的。比普通荧光显微镜下都差很多,是什么原因?
: 共聚焦用的比较少,没经验。
: zeiss LSM 510
: 先谢谢。
I*a
38 楼
转头发包子。
p*l
46 楼
Wide field image you see will always be better than what you get from
confocal. There are multiple reasons.
First, in wide field you see fluorescence from multiple layers, so the
signal is stronger.
Second, believe it or not, human eye is more sensitive than most PMT and
cameras. Human eye can detect single photon with minimal dark noise if your eyes have stay in dark for a long time. The drawback of human eye is it can only refresh the image 10~20 times per second, and you can't save the image you see into a computer. PMT can detect signal photon if you set the gain to maximal, but under the maximal gain, the signal is usually very noisy. PMTs in commercial confocal microscopes are not of best quality.
Last and the most important, when you look at the sample through the eye
piece, you eyes observe all portions of the sample for quite a long time.
When you scan the sample under confocal, pixels are scanned in the fly. The observation time, or in professional words, the integration time per pixel
is less than a millisecond. Within that short time, the number of photons is
limited.
The advantage of confocal is it removes out of focus background. If you are not bother by the background, you don't need confocal.
confocal. There are multiple reasons.
First, in wide field you see fluorescence from multiple layers, so the
signal is stronger.
Second, believe it or not, human eye is more sensitive than most PMT and
cameras. Human eye can detect single photon with minimal dark noise if your eyes have stay in dark for a long time. The drawback of human eye is it can only refresh the image 10~20 times per second, and you can't save the image you see into a computer. PMT can detect signal photon if you set the gain to maximal, but under the maximal gain, the signal is usually very noisy. PMTs in commercial confocal microscopes are not of best quality.
Last and the most important, when you look at the sample through the eye
piece, you eyes observe all portions of the sample for quite a long time.
When you scan the sample under confocal, pixels are scanned in the fly. The observation time, or in professional words, the integration time per pixel
is less than a millisecond. Within that short time, the number of photons is
limited.
The advantage of confocal is it removes out of focus background. If you are not bother by the background, you don't need confocal.
p*l
47 楼
If you do confocal a lot, I suggest you keep a stained slide as your control
standard. You can test the control slide first every time under the same
setting. In this way if there is some thing wrong with the scope, you will
know. If there is something wrong with your sample, you will know too.
Invitrogen sells multi-color control slides. They last a long time.
http://tinyurl.com/6t8ue29
【在 I***a 的大作中提到】
: 这是图,
: 处理过,差不多了
standard. You can test the control slide first every time under the same
setting. In this way if there is some thing wrong with the scope, you will
know. If there is something wrong with your sample, you will know too.
Invitrogen sells multi-color control slides. They last a long time.
http://tinyurl.com/6t8ue29
【在 I***a 的大作中提到】
: 这是图,
: 处理过,差不多了
l*1
48 楼
For LIVE IMAGING
please transfer to LSM 5 Live; Carl Zeiss instrument if your college/university has it.
那本圣经 free download ok now
cited from its pp152
>
A new type of slit-scanning confocal microscope
(LSM 5 Live; Carl Zeiss, Inc.) has
recently been introduced that allows images to
be acquired at rates as fast as or faster than
can be achieved with a spinning-disk confocal
microscope, and with as low or lower rates
of photobleaching. The system adopts principles
from both the spot scanner and the spinning
disk in that it uses a single scanning galvanometer
to move an illumination line that is
combined with a sensitive single-line CCD detector.
The point source of light from the laser
is optically converted to a narrow line, which
is reflected onto the specimen by a novel beam
splitter consisting of a mirrored line on transparent
glass. The line illumination is scanned
across the specimen. The emitted fluorescence
from the specimen that is collected by the objective
passes through the beam splitter and
is detected by a linear CCD detector. A slit
aperture in front of the detector blocks out-offocus
light, analogous to the pinhole aperture
in an LSCM. The LSM 5 Live has somewhat
poorer resolution than a spot-scanning LSCM,
but can capture images much more rapidly.
Ps: or alternatively NIKON A1R CLSM with a number of advanced features, including a high-resolution
galvanometer-based scanner (4,096 x 4,096 pixels; non-resonant) and a high-speed resonant scanner, a
continuously variable hexagonal pinhole, spectral imaging capacity, several optical output ports, and a pair
of input ports for multiple lasers of different wavelengths
//www.microscopyu.com/articles/confocal/resonantscanning.html
USA below
HTTPS//ctsi.mcw.edu/investigator/research-cores-centers/mu/nikon-a1r/
has it too.
具体偶们这里用哪一种设备的信息
站内短你了 IDjia
不要人肉偶啊
【在 I***a 的大作中提到】
: 你的建议很好的,
: 一开始是用了GFP,做live imaging,结果是同样的情况,以为表达很弱
: 改用免疫荧光,
please transfer to LSM 5 Live; Carl Zeiss instrument if your college/university has it.
那本圣经 free download ok now
cited from its pp152
>
A new type of slit-scanning confocal microscope
(LSM 5 Live; Carl Zeiss, Inc.) has
recently been introduced that allows images to
be acquired at rates as fast as or faster than
can be achieved with a spinning-disk confocal
microscope, and with as low or lower rates
of photobleaching. The system adopts principles
from both the spot scanner and the spinning
disk in that it uses a single scanning galvanometer
to move an illumination line that is
combined with a sensitive single-line CCD detector.
The point source of light from the laser
is optically converted to a narrow line, which
is reflected onto the specimen by a novel beam
splitter consisting of a mirrored line on transparent
glass. The line illumination is scanned
across the specimen. The emitted fluorescence
from the specimen that is collected by the objective
passes through the beam splitter and
is detected by a linear CCD detector. A slit
aperture in front of the detector blocks out-offocus
light, analogous to the pinhole aperture
in an LSCM. The LSM 5 Live has somewhat
poorer resolution than a spot-scanning LSCM,
but can capture images much more rapidly.
Ps: or alternatively NIKON A1R CLSM with a number of advanced features, including a high-resolution
galvanometer-based scanner (4,096 x 4,096 pixels; non-resonant) and a high-speed resonant scanner, a
continuously variable hexagonal pinhole, spectral imaging capacity, several optical output ports, and a pair
of input ports for multiple lasers of different wavelengths
//www.microscopyu.com/articles/confocal/resonantscanning.html
USA below
HTTPS//ctsi.mcw.edu/investigator/research-cores-centers/mu/nikon-a1r/
has it too.
具体偶们这里用哪一种设备的信息
站内短你了 IDjia
不要人肉偶啊
【在 I***a 的大作中提到】
: 你的建议很好的,
: 一开始是用了GFP,做live imaging,结果是同样的情况,以为表达很弱
: 改用免疫荧光,
l*1
50 楼
别理会那个ID
he/she 是和楼主的开题故意捣乱的 吧?
偶估计是wsn 让华人mm 给off 了 或者是wsnv 让
人家华人MM 给抢了未来的LD了。
比如:Linda Buck her case
please go to
http://www.mitbbs.com/article_t1/Biology/31638425_0_2.html
[ 37th floor
发信人: demoner (给我一块二向箔), 信区: Biology
标 题: Re: 有些女PI真可怕
发信站: BBS 未名空间站 (Fri Feb 24 18:40:55 2012, 美东)
Cori Bargman是美女又是天才,难怪Richar Axel不要Linda Buck...
她读PhD的时候就跟Bob Weinburg,参与发现Ras在Cancer中的作用,
她做博士后跟Bob Horvitz,发现nematodes在chemosensing的中作用,
后面就就跟Richar Axel谈恋爱,做faculty.
她从博士导师到博后老板到老公,全都是诺贝尔奖级别的人物.生物学圈子里面,还有
比她爽的吗?
当然要温婉,都这么幸运了,有什么必要不温婉吗?
but Buck L. lost BF but got Nobel prize in 2004:
>
Richard Axel (born July 2, 1946, New York City) is an American neuroscientist whose work on the olfactory
system won him and Linda B. Buck, a former post-doctoral scientist in his research group, the Nobel Prize
in Physiology or Medicine in 2004.
//en.wikipedia.org/wiki/Richard_Axel
----
he/she 是和楼主的开题故意捣乱的 吧?
偶估计是wsn 让华人mm 给off 了 或者是wsnv 让
人家华人MM 给抢了未来的LD了。
比如:Linda Buck her case
please go to
http://www.mitbbs.com/article_t1/Biology/31638425_0_2.html
[ 37th floor
发信人: demoner (给我一块二向箔), 信区: Biology
标 题: Re: 有些女PI真可怕
发信站: BBS 未名空间站 (Fri Feb 24 18:40:55 2012, 美东)
Cori Bargman是美女又是天才,难怪Richar Axel不要Linda Buck...
她读PhD的时候就跟Bob Weinburg,参与发现Ras在Cancer中的作用,
她做博士后跟Bob Horvitz,发现nematodes在chemosensing的中作用,
后面就就跟Richar Axel谈恋爱,做faculty.
她从博士导师到博后老板到老公,全都是诺贝尔奖级别的人物.生物学圈子里面,还有
比她爽的吗?
当然要温婉,都这么幸运了,有什么必要不温婉吗?
but Buck L. lost BF but got Nobel prize in 2004:
>
Richard Axel (born July 2, 1946, New York City) is an American neuroscientist whose work on the olfactory
system won him and Linda B. Buck, a former post-doctoral scientist in his research group, the Nobel Prize
in Physiology or Medicine in 2004.
//en.wikipedia.org/wiki/Richard_Axel
----
s*j
51 楼
其实应该问的问题是为什么 point scan confocal一定要用PMT, 而不是一个 single
pixel的CCD chip. 尽管现在CCD的QE接近1, 而PMT的QE在50%以下. confocal也有用CCD
和水银灯的, 就是你说的什么"发散光源" .
widefiled是指整个 field of view 在同时被激发, 如果你只看某一个特定的点, 光
路和 confocal没有什么区别. 什么叫"光斑变大"? 你和另外一位一样(copy一个有效分
辨率的表来说视野.), 根本就没搞清楚 field of view, kohler illumination,
resolution limit, point spread function 之间的区别.
【在 f******e 的大作中提到】
: 你懂, 你说呀. 好好理解啥叫"WIDEFILED" . 为啥WIDEFILED 不用PMT.
pixel的CCD chip. 尽管现在CCD的QE接近1, 而PMT的QE在50%以下. confocal也有用CCD
和水银灯的, 就是你说的什么"发散光源" .
widefiled是指整个 field of view 在同时被激发, 如果你只看某一个特定的点, 光
路和 confocal没有什么区别. 什么叫"光斑变大"? 你和另外一位一样(copy一个有效分
辨率的表来说视野.), 根本就没搞清楚 field of view, kohler illumination,
resolution limit, point spread function 之间的区别.
【在 f******e 的大作中提到】
: 你懂, 你说呀. 好好理解啥叫"WIDEFILED" . 为啥WIDEFILED 不用PMT.
s*j
52 楼
你还是应该把你自己帖得那本"bible"看看再来发言.
【在 l**********1 的大作中提到】
: 别理会那个ID
: he/she 是和楼主的开题故意捣乱的 吧?
: 偶估计是wsn 让华人mm 给off 了 或者是wsnv 让
: 人家华人MM 给抢了未来的LD了。
: 比如:Linda Buck her case
: please go to
: http://www.mitbbs.com/article_t1/Biology/31638425_0_2.html
: [ 37th floor
: 发信人: demoner (给我一块二向箔), 信区: Biology
: 标 题: Re: 有些女PI真可怕
【在 l**********1 的大作中提到】
: 别理会那个ID
: he/she 是和楼主的开题故意捣乱的 吧?
: 偶估计是wsn 让华人mm 给off 了 或者是wsnv 让
: 人家华人MM 给抢了未来的LD了。
: 比如:Linda Buck her case
: please go to
: http://www.mitbbs.com/article_t1/Biology/31638425_0_2.html
: [ 37th floor
: 发信人: demoner (给我一块二向箔), 信区: Biology
: 标 题: Re: 有些女PI真可怕
s*j
53 楼
invitrogen的slide一两年之后强度会有相当的变化.
最好的是用植物切片的autofluorescene signal, 十年都不会变多少. 可以找那些公
司的rep要, 他们那多的很,
control
【在 p*l 的大作中提到】
: If you do confocal a lot, I suggest you keep a stained slide as your control
: standard. You can test the control slide first every time under the same
: setting. In this way if there is some thing wrong with the scope, you will
: know. If there is something wrong with your sample, you will know too.
: Invitrogen sells multi-color control slides. They last a long time.
: http://tinyurl.com/6t8ue29
最好的是用植物切片的autofluorescene signal, 十年都不会变多少. 可以找那些公
司的rep要, 他们那多的很,
control
【在 p*l 的大作中提到】
: If you do confocal a lot, I suggest you keep a stained slide as your control
: standard. You can test the control slide first every time under the same
: setting. In this way if there is some thing wrong with the scope, you will
: know. If there is something wrong with your sample, you will know too.
: Invitrogen sells multi-color control slides. They last a long time.
: http://tinyurl.com/6t8ue29
l*1
54 楼
真人不用点激将法 是不会露脸的
http://www.mitbbs.com/article_t/Biology/31638427.html
回复]
[ 3 ]
发信人: IVYtony (村委书记), 信区: Biology
标 题: Re: 大家讨论下, what is the next big question in your field?
发信站: BBS 未名空间站 (Fri Feb 24 15:29:15 2012, 美东)
I'm sure no one will you tell you their million-dollar questions. If they do
, that's not a million-dollar question for sure.
-----
single
CCD
【在 s*****j 的大作中提到】
: invitrogen的slide一两年之后强度会有相当的变化.
: 最好的是用植物切片的autofluorescene signal, 十年都不会变多少. 可以找那些公
: 司的rep要, 他们那多的很,
:
: control
http://www.mitbbs.com/article_t/Biology/31638427.html
回复]
[ 3 ]
发信人: IVYtony (村委书记), 信区: Biology
标 题: Re: 大家讨论下, what is the next big question in your field?
发信站: BBS 未名空间站 (Fri Feb 24 15:29:15 2012, 美东)
I'm sure no one will you tell you their million-dollar questions. If they do
, that's not a million-dollar question for sure.
-----
single
CCD
【在 s*****j 的大作中提到】
: invitrogen的slide一两年之后强度会有相当的变化.
: 最好的是用植物切片的autofluorescene signal, 十年都不会变多少. 可以找那些公
: 司的rep要, 他们那多的很,
:
: control
s*j
55 楼
想学就多看书.
目标 讨论帖子 也不见了吗?)
【在 l**********1 的大作中提到】
: 真人不用点激将法 是不会露脸的
: http://www.mitbbs.com/article_t/Biology/31638427.html
: 回复]
: [ 3 ]
: 发信人: IVYtony (村委书记), 信区: Biology
: 标 题: Re: 大家讨论下, what is the next big question in your field?
: 发信站: BBS 未名空间站 (Fri Feb 24 15:29:15 2012, 美东)
: I'm sure no one will you tell you their million-dollar questions. If they do
: , that's not a million-dollar question for sure.
: -----
目标 讨论帖子 也不见了吗?)
【在 l**********1 的大作中提到】
: 真人不用点激将法 是不会露脸的
: http://www.mitbbs.com/article_t/Biology/31638427.html
: 回复]
: [ 3 ]
: 发信人: IVYtony (村委书记), 信区: Biology
: 标 题: Re: 大家讨论下, what is the next big question in your field?
: 发信站: BBS 未名空间站 (Fri Feb 24 15:29:15 2012, 美东)
: I'm sure no one will you tell you their million-dollar questions. If they do
: , that's not a million-dollar question for sure.
: -----
I*a
59 楼
太专业了。
l*1
60 楼
楼主
BAZO two again got
Thank you so much.
还有10th 12th floor revised already from some misleading paste yesterday
please lift up there for get updated Book full text link address.
if you had time should go to below book:
//www.amazon.co.uk/gp/search?index=books&linkCode=qs&keywords=0123740258
Google book link:
//books.google.no/books?id=H--zxc_N-
jMC&printsec=frontcover&hl=no&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
TROUBLESHOOTING
Troubleshooting advice can be found in Table 2. Additional troubleshooting guidance can be found in
reference 8
Reference
No. 8
Goodwin, P.C. in "Digital Microscopy" 3rd ed., Vol. 81
(eds. Sluder, G. & Wolf, D.E.) 397–413 (Elsevier, 2007).
from Nature Protocols 2011 one paper:
//www.abrf.org/ResearchGroups/LightMicroscopyResearchGroup/Protocols/
ColeetalNatureProtocols2011.pdf
Ps:
我得Systems Biology project 也可能用得到这个LIVING Imaging by CLSMs.
so it is also for here side also.
【在 I***a 的大作中提到】
: 抗体是FITC标记的,在普通荧光显微镜下,看得挺好的,想到共聚焦上拍点漂
: 亮的照片
: ,结果照片很差劲,模模糊糊的。比普通荧光显微镜下都差很多,是什么原因?
: 共聚焦用的比较少,没经验。
: zeiss LSM 510
: 先谢谢。
BAZO two again got
Thank you so much.
还有10th 12th floor revised already from some misleading paste yesterday
please lift up there for get updated Book full text link address.
if you had time should go to below book:
//www.amazon.co.uk/gp/search?index=books&linkCode=qs&keywords=0123740258
Google book link:
//books.google.no/books?id=H--zxc_N-
jMC&printsec=frontcover&hl=no&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
TROUBLESHOOTING
Troubleshooting advice can be found in Table 2. Additional troubleshooting guidance can be found in
reference 8
Reference
No. 8
Goodwin, P.C. in "Digital Microscopy" 3rd ed., Vol. 81
(eds. Sluder, G. & Wolf, D.E.) 397–413 (Elsevier, 2007).
from Nature Protocols 2011 one paper:
//www.abrf.org/ResearchGroups/LightMicroscopyResearchGroup/Protocols/
ColeetalNatureProtocols2011.pdf
Ps:
我得Systems Biology project 也可能用得到这个LIVING Imaging by CLSMs.
so it is also for here side also.
【在 I***a 的大作中提到】
: 抗体是FITC标记的,在普通荧光显微镜下,看得挺好的,想到共聚焦上拍点漂
: 亮的照片
: ,结果照片很差劲,模模糊糊的。比普通荧光显微镜下都差很多,是什么原因?
: 共聚焦用的比较少,没经验。
: zeiss LSM 510
: 先谢谢。
p*l
64 楼
我想厚脸皮提醒这位爱学习的同学一句,看你最近的帖子,觉得很多成像技术你也只是
听说而已。这样狂贴各种各样的信息给楼主,未必能帮忙,反而可能把楼主搞晕了。这
个版上confocal高手不少,大家都不太发言主要是因为问题的可能性太多了,瞎出主意
可能反而帮倒忙。楼主想解决问题,就近找个有经验的人更事半功倍。
【在 l**********1 的大作中提到】
: //www.abrf.org/ResearchGroups/LightMicroscopyResearchGroup/Protocols/
: ColeetalNatureProtocols2011.pdf
: Table 2
:
: single
: CCD
听说而已。这样狂贴各种各样的信息给楼主,未必能帮忙,反而可能把楼主搞晕了。这
个版上confocal高手不少,大家都不太发言主要是因为问题的可能性太多了,瞎出主意
可能反而帮倒忙。楼主想解决问题,就近找个有经验的人更事半功倍。
【在 l**********1 的大作中提到】
: //www.abrf.org/ResearchGroups/LightMicroscopyResearchGroup/Protocols/
: ColeetalNatureProtocols2011.pdf
: Table 2
:
: single
: CCD
l*1
65 楼
没有搞KO mice rat 以及细胞生物的 借用CLSM的薄厚或pre-PhD需要 看懂MIT psf 相
关的PhD thesis
哪怕是摘要的水平
我是搞理论生物物理的
我贴给自己看呢 记录存档用的。please refer 48th floor bottom message.
谁没事在这多费功夫加时间啊
Anyway, thanks LZ BAOZI and his/her null floor paste.
【在 p*l 的大作中提到】
: 我想厚脸皮提醒这位爱学习的同学一句,看你最近的帖子,觉得很多成像技术你也只是
: 听说而已。这样狂贴各种各样的信息给楼主,未必能帮忙,反而可能把楼主搞晕了。这
: 个版上confocal高手不少,大家都不太发言主要是因为问题的可能性太多了,瞎出主意
: 可能反而帮倒忙。楼主想解决问题,就近找个有经验的人更事半功倍。
关的PhD thesis
哪怕是摘要的水平
我是搞理论生物物理的
我贴给自己看呢 记录存档用的。please refer 48th floor bottom message.
谁没事在这多费功夫加时间啊
Anyway, thanks LZ BAOZI and his/her null floor paste.
【在 p*l 的大作中提到】
: 我想厚脸皮提醒这位爱学习的同学一句,看你最近的帖子,觉得很多成像技术你也只是
: 听说而已。这样狂贴各种各样的信息给楼主,未必能帮忙,反而可能把楼主搞晕了。这
: 个版上confocal高手不少,大家都不太发言主要是因为问题的可能性太多了,瞎出主意
: 可能反而帮倒忙。楼主想解决问题,就近找个有经验的人更事半功倍。
w*y
68 楼
几个人在这里吵些没用的,对人家楼主有什么帮助?都洗洗睡吧。
我说几个可能办法楼主可以参考下:
看样图里的东东奇形怪状的,我也不知道是啥,无所谓。如果你的样品就是长这样,只
是背景噪音太大,那说明聚焦没问题。可以考虑降低detector gain, 降低扫描速率;
如果信号也因此变弱了,可以考虑适当增加pin hole,适当增加laser。还不行就多扫
几张average (LSM直接就有这功能)
如果样品根本不是这样,完全失真了,要么没聚焦好,要么机器需要调试,那还是找懂行的帮着一起看看吧。
我说几个可能办法楼主可以参考下:
看样图里的东东奇形怪状的,我也不知道是啥,无所谓。如果你的样品就是长这样,只
是背景噪音太大,那说明聚焦没问题。可以考虑降低detector gain, 降低扫描速率;
如果信号也因此变弱了,可以考虑适当增加pin hole,适当增加laser。还不行就多扫
几张average (LSM直接就有这功能)
如果样品根本不是这样,完全失真了,要么没聚焦好,要么机器需要调试,那还是找懂行的帮着一起看看吧。
s*j
69 楼
s*j
70 楼
吵的是理论上的问题. 对LZ是没帮助.
不过你说的这堆大实话, 也没什么用.
懂行的帮着一起看看吧。
【在 w********y 的大作中提到】
: 几个人在这里吵些没用的,对人家楼主有什么帮助?都洗洗睡吧。
: 我说几个可能办法楼主可以参考下:
: 看样图里的东东奇形怪状的,我也不知道是啥,无所谓。如果你的样品就是长这样,只
: 是背景噪音太大,那说明聚焦没问题。可以考虑降低detector gain, 降低扫描速率;
: 如果信号也因此变弱了,可以考虑适当增加pin hole,适当增加laser。还不行就多扫
: 几张average (LSM直接就有这功能)
: 如果样品根本不是这样,完全失真了,要么没聚焦好,要么机器需要调试,那还是找懂行的帮着一起看看吧。
不过你说的这堆大实话, 也没什么用.
懂行的帮着一起看看吧。
【在 w********y 的大作中提到】
: 几个人在这里吵些没用的,对人家楼主有什么帮助?都洗洗睡吧。
: 我说几个可能办法楼主可以参考下:
: 看样图里的东东奇形怪状的,我也不知道是啥,无所谓。如果你的样品就是长这样,只
: 是背景噪音太大,那说明聚焦没问题。可以考虑降低detector gain, 降低扫描速率;
: 如果信号也因此变弱了,可以考虑适当增加pin hole,适当增加laser。还不行就多扫
: 几张average (LSM直接就有这功能)
: 如果样品根本不是这样,完全失真了,要么没聚焦好,要么机器需要调试,那还是找懂行的帮着一起看看吧。
相关阅读
papers help帮朋友发的招聘信息 Scientist I, BiologyamiRNA 会增强target gene的转录吗?哈利波特与隐性等位基因(转)Manuscript editing work(Got it! Thanks to phila)好心人帮帮忙,求paper,3x a lot又准备发一圈包子,大家排好队, 别挤live cell image, 细胞膜染色荧光染料, 求助请教下大家,生物信息PhD一般多久能毕业啊 (转载)ligation的问题Lies, Damned Lies, and Medical Science老鼠毛色是单一基因吗?在外地写论文7个月会不会太过分了?paper help号外:NASA发现新细菌的DNA由砷构成 (转载)土问:除biotin外常用的小分子functional group?secondary structure prediction software我也来发包子攒RP请教精确定量NH2 group的方法TaqMan® MicroRNA Assay internal control