诺委会太不像话了 (转载)# Biology - 生物学
s*y
1 楼
【 以下文字转载自 Military 讨论区 】
发信人: rbs (jay), 信区: Military
标 题: 诺委会太不像话了 (转载)
发信站: BBS 未名空间站 (Wed Oct 4 10:58:51 2017, 美东)
发信人: rbs (jay), 信区: Joke
标 题: 诺委会太不像话了
发信站: BBS 未名空间站 (Wed Oct 4 10:23:52 2017, 美东)
尼玛87篇参考文献就不能加一篇施教授或能教授的CNS?
References
1. Ruska, E., Nobel Lectures, Physics 1981-1990, Tore Frängsmyr and
Gösta Ekspong, Eds. (1993) World Scientific Publishing, Singapore
2. Marton, L. (1934) Electron microscopy of biological objects. Nature
133, 911-911
3. Althoff, T., Mills, D. J., Popot, J. L., and Kühlbrandt, W. (2011)
Arrangement of electron transport chain components in bovine mitochondrial
supercomplex I1III2IV1. The EMBO Journal 30, 4652-4664
4. Letts, J. A., Fiedorczuk, K., and Sazanov, L. A. (2016) The
architecture of respiratory supercomplexes.
Nature 537, 644-648
5. Hall, C. E., Jakus, M. A., and Schmitt, F. O. (1945) The structure of
certain muscle fibrils as revealed by the use of electron stains. J. Applied
Physics 16, 459-465
6. Brenner, S., and Horne, R. W. (1959) A negative staining method for
high resolution electron microscopy of viruses. Biochim. Biophys. Acta 34,
103-110
7. Huxley, H. E., and Zubay, G. (1961) Preferential staining of nucleic
acid-containing structures for electron microscopy. J. Biophys. Biochem.
Cytology 11, 273-296
8. Klug, A., and Finch, J. T. (1965) Structure of viruses of the
papilloma-polyoma type. I. human wart.
J. Mol. Biol. 11, 403-423
9. Klug, A., and Berger, J. E. (1964) An optical method for the analysis
of periodicities in electron. J. Mol. Biol. 10, 565-569
10. Klug, A., and De Rosier, D. J. (1966) Optical filtering of electron
micrographs: reconstruction of one- sided images. Nature 212, 29-32
11. Erickson, H. P., and Klug, A. (1970) The Fourier transform of an
electron micrograph: effects of defocussing and aberrations, and
implications for the use of underfocus contrast enhancement. Berichte der
Bunsengesellschaft für physikalische Chemie 74, 1129-1137
12. Hoppe, W., Langer, R., Knesch, G., and Poppe, C. (1968) Protein-
kristallstrukturanalyse mit elektronenstrahlen. Naturwissenschaften 55, 333-
336
13. Hoppe, W., Gassmann, J., Hunsmann, N., Schramm, H. J., and Sturm, M.
(1974) Three dimensional reconstruction of individual negatively stained
yeast fatty acid synthetase molecules from tilt series in the electron
microscope. Hoppe-Seyler's Z. Physiol. Chem. 355, 1483-1487
14. DeRosier, D. J., and Klug, A. (1968) Reconstruction of three
dimensional structures from electron micrographs. Nature 217, 130-134
15. Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J., and Klug
, A. (1970) Three dimensional reconstructions of spherical viruses by
Fourier synthesis from electron micrographs. Nature 226, 421- 425
16. Crowther, R. A., DeRosier, D. J., and Klug, A. (1970) The
reconstruction of a three-dimensional structure from projections and its
application to electron microscopy. Proc. R. Soc. London. A 317, 319-340
17. Parsons, D. F. (1974) Structure of wet specimens in electron
microscopy. Improved environmental chambers make it possible to examine wet
specimens easily. Science 186, 407-414
18. Matricardi, V. R., Moretz, R. C., and Parsons, D. F. (1972) Electron
diffraction of wet proteins: catalase.
Science 177, 268-270
19. Glaeser, R. M. (1971) Limitations to significant information in
biological electron microscopy as a result of radiation damage. J.
Ultrastruct. Res. 36, 466-482
20. Frank, J. (1975) Averaging of low exposure electron micrographs of
non-periodic objects.
Ultramicroscopy 1, 159-162
21. Kuo, I. A. M., and Glaeser, R. M. (1975) Development of methodology
for low exposure, high resolution electron microscopy of biological
specimens. Ultramicroscopy 1, 53-66
22. Unwin, P. N. T., and Henderson, R. (1975) Molecular structure
determination by electron microscopy of unstained crystalline specimens. J.
Mol. Biol. 94, 425-432
23. Henderson, R., and Unwin, P. N. T. (1975) Three-dimensional model of
purple membrane obtained by electron microscopy. Nature 257, 28-32
24. Erickson, H. P., and Klug, A. (1971) Measurement and compensation of
defocusing and aberrations by fourier processing of electron micrographs.
Philos. Trans. R. Soc., B 261, 105-118
25. Fernández-Morán, H. (1960) Low-temperature preparation techniques
for electron microscopy of biological specimens based on rapid freezing with
liquid Helium II. In Annals of the New York Academy of Sciences 85, 689-713
26. Schmidt, P. J. (2006) Basile J. Luyet and the beginnings of
transfusion cryobiology. Transfusion Medicine Reviews 20, 242-246
27. Haas, D. J. (1968) X-ray studies on lysozyme crystals at–50° C.
Acta Cryst. B 24, 604-604
28. Haas, D. J., and Rossmann, M. G. (1970) Crystallographic studies on
lactate dehydrogenase at-75 degrees C. Acta Crystallogr B 26, 998-1004
29. Taylor, K. A., and Glaeser, R. M. (1974) Electron diffraction of
frozen, hydrated protein crystals.
Science 186, 1036-1037
30. Taylor, K. A., and Glaeser, R. M. (1976) Electron microscopy of
frozen hydrated biological specimens.
J. Ultrastruct. Res. 55, 448-456
31. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E.
, and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin
based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899-
929
32. Kühlbrandt, W., Wang, D. N., and Fujiyoshi, Y. (1994) Atomic model
of plant light-harvesting complex by electron crystallography. Nature 367,
614-621
33. Wang, D. N., and Kühlbrandt, W. (1991) High-resolution electron
crystallography of light-harvesting chlorophyll ab-protein complex in three
different media. J. Mol. Biol. 217, 691-699
34. Nogales, E., Wolf, S. G., and Downing, K. H. (1998) Structure of the
αβ tubulin dimer by electron crystallography. Nature 391, 199-203
35. Murata, K., Mitsuoka, K., Hiral, T., Walz, T., Agre, P., Heymann, J.
B., Engel, A., and Fujiyoshi, Y. (2000) Structural determinants of water
permeation through aquaporin-1. Nature 407, 599-605
36. Glaeser, R. M. (1999) Review: Electron crystallography: present
excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128
, 3-14
37. Henderson, R. (1995) The potential and limitations of neutrons,
electrons and X-rays for atomic resolution microscopy of unstained
biological molecules. Q. Rev. Biophys. 28, 171-193
38. Merk, A., Bartesaghi, A., Banerjee, S., Falconieri, V., Rao, P.,
Davis, M. I., Pragani, R., Boxer, M. B., Earl, L. A., Milne, J. L. S., and
Subramaniam, S. (2016) Breaking cryo-EM resolution barriers to facilitate
drug discovery. Cell 165, 1698-1707
39. Khoshouei, M., Radjainia, M., Baumeister, W., and Danev, R. (2017)
Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta
phase plate. Nature Comm. 8, 16099
40. Rosenthal, P. B., and Henderson, R. (2003) Optimal determination of
particle orientation, absolute hand, and contrast loss in single-particle
electron cryomicroscopy. J. Mol. Biol. 333, 721-745
41. Saxton, W. O., and Frank, J. (1977) Motif detection in quantum noise-
limited electron micrographs by cross-correlation. Ultramicroscopy 2, 219-
227
42. Frank, J., and Al-Ali, L. (1975) Signal-to-noise ratio of electron
micrographs obtained by cross correlation. Nature 256, 376-379
43. Frank, J., Goldfarb, W., Eisenberg, D., and Baker, T. S. (1978)
Reconstruction of glutamine synthetase using computer averaging.
Ultramicroscopy 3, 283-290
44. van Heel, M., and Frank, J. (1981) Use of multivariates statistics in
analysing the images of biological macromolecules. Ultramicroscopy 6, 187-
194
45. Frank, J., and van Heel, M. (1982) Correspondence analysis of aligned
images of biological particles.
J. Mol. Biol. 161, 134-137
46. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1986)
A new 3D reconstruction scheme applied to the 50s ribosomal subunit of E.
coli. J. Microsc. 141, RP1-RP2
47. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987)
Three-dimensional reconstruction from a single-exposure, random conical
tilt series applied to the 50S ribosomal subunit of Escherichia coli. J.
Microsc. 146, 113-136
48. Radermacher, M. (1980) Dreidimensionale Rekonstruktion bei kegelf
246;rmiger Kippung im Elektronenmikroskop. Thesis, Technical University,
Munich.
49. Frank, J., and Shimkin, B. (1978) A new image processing software
system for structural analysis and contrast enhancement. In: Proc. 9th
Intern. Congr. on Electron Microscopy, Ed. J.M. Sturgess (Microscopical Soc.
Canada, Toronto, Ontario, 1978) I, 210
50. Frank, J., Shimkin, B., and Dowse, H. (1981) SPIDER-A modular
software system for electron image processing. Ultramicroscopy 6, 343-357
51. Burton, E. F., and Oliver, W. F. (1935) X-Ray diffraction patterns of
ice. Nature 135, 505-506
52. Dowell, L. G., and Rinfret, A. P. (1960) Low-temperature forms of ice
as studied by X-ray diffraction.
Nature 188, 1144-1148
53. Brüggeller, P., and Mayer, E. (1980) Complete vitrification in pure
liquid water and dilute aqueous solutions. Nature 288, 569-571
54. Jenniskens, P., and Blake, D. F. (1994) Structural transitions in
amorphous water ice and astrophysical implications. Science 265, 753-756
55. Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J.,
McDowall, A. W., and Schultz, P. (1988) Cryo-electron microscopy of
vitrified specimens. Q. Rev. Biophys. 21, 129-228
56. Dubochet, J., and McDowall, A. W. (1981) Vitrification of pure water
for electron microscopy.
J. Microsc. 124, 3-4
57. Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984)
Cryo-electron microscopy of viruses.
Nature 308, 32-36
58. Lepault, J., Booy, F. P., and Dubochet, J. (1983) Electron microscopy
of frozen biological suspensions.
J. Microsc. 129, 89-102
59. Dubochet, J., Chang, J. J., Freeman, R., Lepault, J., and McDowall, A
. W. (1982) Frozen aqueous suspensions. Ultramicroscopy 10, 55-61
60. Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A., and Homo, J.
C. (1982) Electron microscopy of frozen water and aqueous solutions. J.
Microsc. 128, 219-237
61. Dubochet, J., Adrian, M., Lepault, J., and McDowall, A. W. (1985)
Emerging techniques: Cryo-electron microscopy of vitrified biological
specimens. Trends Biochem. Sci. 10, 143-146
62. Faruqi, A. R., Cattermole, D. M., and Raeburn, C. (2003) Direct
electron detection methods in electron microscopy. Nuclear Instruments and
Methods in Physics Research, A 513, 317-321
63. Faruqi, A. R., Henderson, R., Pryddetch, M., Allport, P., and Evans,
A. (2005) Direct single electron detection with a CMOS detector for electron
microscopy. Nuclear Instruments and Methods in Physics Research, A 546, 170
-175
64. Xuong, N. H., Milazzo, A. C., Leblanc, P., Duttweiler, F., Bouwer, J.
, Peltier, S., Ellisman, M., Denes, P., Bieser, F., Matis, H. S., Wieman, H.
, and Kleinfelder, S. (2004) First use of a high sensitivity active pixel
sensor array as a detector for electron microscopy. In Proceedings of SPIE -
the International Society for Optical Engineering
65. Milazzo, A. C., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J. C.,
Peltier, S., Ellisman, M., Bieser, F., Matis, H. S., Wieman, H., Denes, P.,
Kleinfelder, S., and Xuong, N. H. (2005) Active pixel sensor array as a
detector for electron microscopy. Ultramicroscopy 104, 152-159
66. McMullan, G., Faruqi, A. R., and Henderson, R. (2016) Direct
electrondetectors. In Methods in Enzymology (Crowther, R. A. ed.), Academic
Press. pp 1-17
67. Li, X., Mooney, P., Zheng, S., Booth, C. R., Braunfeld, M. B.,
Gubbens, S., Agard, D. A., and Cheng, Y. (2013) Electron counting and beam-
induced motion correction enable near-atomic-resolution single- particle
cryo-EM. Nature Methods 10, 584-590
68. McMullan, G., Clark, A. T., Turchetta, R., and Faruqi, A. R. (2009)
Enhanced imaging in low dose electron microscopy using electron counting.
Ultramicroscopy 109, 1411-1416
69. Brilot, A. F., Chen, J. Z., Cheng, A., Pan, J., Harrison, S. C.,
Potter, C. S., Carragher, B., Henderson, R., and Grigorieff, N. (2012) Beam-
induced motion of vitrified specimen on holey carbon film. J. Struct. Biol.
177, 630-637
70. Campbell, M. G., Cheng, A., Brilot, A. F., Moeller, A., Lyumkis, D.,
Veesler, D., Pan, J., Harrison, S. C., Potter, C. S., Carragher, B., and
Grigorieff, N. (2012) Movies of ice-embedded particles enhance resolution in
electron cryo-microscopy. Structure 20, 1823-1828
71. Ripstein, Z. A., and Rubinstein, J. L. (2016) Processing of cryo-EM
movie data. In Methods in Enzymology 579, 103-124
72. Rubinstein, J. L., and Brubaker, M. A. (2015) Alignment of cryo-EM
movies of individual particles by optimization of image translations. J.
Struct. Biol. 192, 188-195
73. Heide, H. G. (1982) Design and operation of cold stages.
Ultramicroscopy 10, 125-154
74. Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M., and Baumeister
, W. (2014) Volta potential phase plate for in-focus phase contrast
transmission electron microscopy. Proc. Natl. Acad. Sci. USA 111, 15635-
15640
75. Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe
, J., Stagg, S., Potter, C. S., and Carragher, B. (2005) Automated molecular
microscopy: The new Leginon system. J. Struct. Biol. 151, 41-60
76. Sigworth, F. J. (1998) A maximum-likelihood approach to single-
particle image refinement. J. Struct. Biol. 122, 328-339
77. Scheres, S. H. W., Gao, H., Valle, M., Herman, G. T., Eggermont, P. P
. B., Frank, J., and Carazo, J. M. (2007) Disentangling conformational
states of macromolecules in 3D-EM through likelihood optimization. Nature
Methods 4, 27-29
78. Liao, M., Cao, E., Julius, D., and Cheng, Y. (2013) Structure of the
TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107-
112
79. Beck, M., and Baumeister, W. (2016) Cryo-electron tomography: can it
reveal the molecular sociology of cells in atomic detail? Trends Cell Biol.
26, 825-837
80. Oikonomou, C. M., and Jensen, G. J. (2017) Cellular electron
cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86,
873-896
81. Rubinstein, J. L. (2017) Cryo-EM captures the dynamics of ion channel
opening. Cell 168, 341-343
82. Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V., and
Stark, H. (2010) Ribosome dynamics and tRNA movement by time-resolved
electron cryomicroscopy. Nature 466, 329-333
83. Hite, R. K., and MacKinnon, R. (2017) Structural titration of Slo2.2,
a Na+-dependent K+ channel. Cell
168, 390-399
84. Zhao, J., Benlekbir, S., and Rubinstein, J. L. (2015) Electron
cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
Nature 521, 241-245
85. Dashti, A., Ben Hail, D., Mashayekhi, G., Schwander, P., des Georges,
A., Frank, J., and Ourmazd, A. (2017) Conformational dynamics and energy
landscapes of ligand binding in RyR1. bioRxiv, DOI: 10.1101/167080
86. Dashti, A., Schwander, P., Langlois, R., Fung, R., Li, W.,
Hosseinizadeh, A., Liao, H. Y., Pallesen, J., Sharma, G., Stupina, V. A.,
Simon, A. E., Dinman, J. D., Frank, J., and Ourmazd, A. (2014) Trajectories
of the ribosome as a Brownian nanomachine. Proc. Natl. Acad. Sci. USA 111,
17492-17497
87. Kühlbrandt, W. (2014) The resolution revolution. Science 343, 1443-
1444
发信人: rbs (jay), 信区: Military
标 题: 诺委会太不像话了 (转载)
发信站: BBS 未名空间站 (Wed Oct 4 10:58:51 2017, 美东)
发信人: rbs (jay), 信区: Joke
标 题: 诺委会太不像话了
发信站: BBS 未名空间站 (Wed Oct 4 10:23:52 2017, 美东)
尼玛87篇参考文献就不能加一篇施教授或能教授的CNS?
References
1. Ruska, E., Nobel Lectures, Physics 1981-1990, Tore Frängsmyr and
Gösta Ekspong, Eds. (1993) World Scientific Publishing, Singapore
2. Marton, L. (1934) Electron microscopy of biological objects. Nature
133, 911-911
3. Althoff, T., Mills, D. J., Popot, J. L., and Kühlbrandt, W. (2011)
Arrangement of electron transport chain components in bovine mitochondrial
supercomplex I1III2IV1. The EMBO Journal 30, 4652-4664
4. Letts, J. A., Fiedorczuk, K., and Sazanov, L. A. (2016) The
architecture of respiratory supercomplexes.
Nature 537, 644-648
5. Hall, C. E., Jakus, M. A., and Schmitt, F. O. (1945) The structure of
certain muscle fibrils as revealed by the use of electron stains. J. Applied
Physics 16, 459-465
6. Brenner, S., and Horne, R. W. (1959) A negative staining method for
high resolution electron microscopy of viruses. Biochim. Biophys. Acta 34,
103-110
7. Huxley, H. E., and Zubay, G. (1961) Preferential staining of nucleic
acid-containing structures for electron microscopy. J. Biophys. Biochem.
Cytology 11, 273-296
8. Klug, A., and Finch, J. T. (1965) Structure of viruses of the
papilloma-polyoma type. I. human wart.
J. Mol. Biol. 11, 403-423
9. Klug, A., and Berger, J. E. (1964) An optical method for the analysis
of periodicities in electron. J. Mol. Biol. 10, 565-569
10. Klug, A., and De Rosier, D. J. (1966) Optical filtering of electron
micrographs: reconstruction of one- sided images. Nature 212, 29-32
11. Erickson, H. P., and Klug, A. (1970) The Fourier transform of an
electron micrograph: effects of defocussing and aberrations, and
implications for the use of underfocus contrast enhancement. Berichte der
Bunsengesellschaft für physikalische Chemie 74, 1129-1137
12. Hoppe, W., Langer, R., Knesch, G., and Poppe, C. (1968) Protein-
kristallstrukturanalyse mit elektronenstrahlen. Naturwissenschaften 55, 333-
336
13. Hoppe, W., Gassmann, J., Hunsmann, N., Schramm, H. J., and Sturm, M.
(1974) Three dimensional reconstruction of individual negatively stained
yeast fatty acid synthetase molecules from tilt series in the electron
microscope. Hoppe-Seyler's Z. Physiol. Chem. 355, 1483-1487
14. DeRosier, D. J., and Klug, A. (1968) Reconstruction of three
dimensional structures from electron micrographs. Nature 217, 130-134
15. Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J., and Klug
, A. (1970) Three dimensional reconstructions of spherical viruses by
Fourier synthesis from electron micrographs. Nature 226, 421- 425
16. Crowther, R. A., DeRosier, D. J., and Klug, A. (1970) The
reconstruction of a three-dimensional structure from projections and its
application to electron microscopy. Proc. R. Soc. London. A 317, 319-340
17. Parsons, D. F. (1974) Structure of wet specimens in electron
microscopy. Improved environmental chambers make it possible to examine wet
specimens easily. Science 186, 407-414
18. Matricardi, V. R., Moretz, R. C., and Parsons, D. F. (1972) Electron
diffraction of wet proteins: catalase.
Science 177, 268-270
19. Glaeser, R. M. (1971) Limitations to significant information in
biological electron microscopy as a result of radiation damage. J.
Ultrastruct. Res. 36, 466-482
20. Frank, J. (1975) Averaging of low exposure electron micrographs of
non-periodic objects.
Ultramicroscopy 1, 159-162
21. Kuo, I. A. M., and Glaeser, R. M. (1975) Development of methodology
for low exposure, high resolution electron microscopy of biological
specimens. Ultramicroscopy 1, 53-66
22. Unwin, P. N. T., and Henderson, R. (1975) Molecular structure
determination by electron microscopy of unstained crystalline specimens. J.
Mol. Biol. 94, 425-432
23. Henderson, R., and Unwin, P. N. T. (1975) Three-dimensional model of
purple membrane obtained by electron microscopy. Nature 257, 28-32
24. Erickson, H. P., and Klug, A. (1971) Measurement and compensation of
defocusing and aberrations by fourier processing of electron micrographs.
Philos. Trans. R. Soc., B 261, 105-118
25. Fernández-Morán, H. (1960) Low-temperature preparation techniques
for electron microscopy of biological specimens based on rapid freezing with
liquid Helium II. In Annals of the New York Academy of Sciences 85, 689-713
26. Schmidt, P. J. (2006) Basile J. Luyet and the beginnings of
transfusion cryobiology. Transfusion Medicine Reviews 20, 242-246
27. Haas, D. J. (1968) X-ray studies on lysozyme crystals at–50° C.
Acta Cryst. B 24, 604-604
28. Haas, D. J., and Rossmann, M. G. (1970) Crystallographic studies on
lactate dehydrogenase at-75 degrees C. Acta Crystallogr B 26, 998-1004
29. Taylor, K. A., and Glaeser, R. M. (1974) Electron diffraction of
frozen, hydrated protein crystals.
Science 186, 1036-1037
30. Taylor, K. A., and Glaeser, R. M. (1976) Electron microscopy of
frozen hydrated biological specimens.
J. Ultrastruct. Res. 55, 448-456
31. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E.
, and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin
based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899-
929
32. Kühlbrandt, W., Wang, D. N., and Fujiyoshi, Y. (1994) Atomic model
of plant light-harvesting complex by electron crystallography. Nature 367,
614-621
33. Wang, D. N., and Kühlbrandt, W. (1991) High-resolution electron
crystallography of light-harvesting chlorophyll ab-protein complex in three
different media. J. Mol. Biol. 217, 691-699
34. Nogales, E., Wolf, S. G., and Downing, K. H. (1998) Structure of the
αβ tubulin dimer by electron crystallography. Nature 391, 199-203
35. Murata, K., Mitsuoka, K., Hiral, T., Walz, T., Agre, P., Heymann, J.
B., Engel, A., and Fujiyoshi, Y. (2000) Structural determinants of water
permeation through aquaporin-1. Nature 407, 599-605
36. Glaeser, R. M. (1999) Review: Electron crystallography: present
excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128
, 3-14
37. Henderson, R. (1995) The potential and limitations of neutrons,
electrons and X-rays for atomic resolution microscopy of unstained
biological molecules. Q. Rev. Biophys. 28, 171-193
38. Merk, A., Bartesaghi, A., Banerjee, S., Falconieri, V., Rao, P.,
Davis, M. I., Pragani, R., Boxer, M. B., Earl, L. A., Milne, J. L. S., and
Subramaniam, S. (2016) Breaking cryo-EM resolution barriers to facilitate
drug discovery. Cell 165, 1698-1707
39. Khoshouei, M., Radjainia, M., Baumeister, W., and Danev, R. (2017)
Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta
phase plate. Nature Comm. 8, 16099
40. Rosenthal, P. B., and Henderson, R. (2003) Optimal determination of
particle orientation, absolute hand, and contrast loss in single-particle
electron cryomicroscopy. J. Mol. Biol. 333, 721-745
41. Saxton, W. O., and Frank, J. (1977) Motif detection in quantum noise-
limited electron micrographs by cross-correlation. Ultramicroscopy 2, 219-
227
42. Frank, J., and Al-Ali, L. (1975) Signal-to-noise ratio of electron
micrographs obtained by cross correlation. Nature 256, 376-379
43. Frank, J., Goldfarb, W., Eisenberg, D., and Baker, T. S. (1978)
Reconstruction of glutamine synthetase using computer averaging.
Ultramicroscopy 3, 283-290
44. van Heel, M., and Frank, J. (1981) Use of multivariates statistics in
analysing the images of biological macromolecules. Ultramicroscopy 6, 187-
194
45. Frank, J., and van Heel, M. (1982) Correspondence analysis of aligned
images of biological particles.
J. Mol. Biol. 161, 134-137
46. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1986)
A new 3D reconstruction scheme applied to the 50s ribosomal subunit of E.
coli. J. Microsc. 141, RP1-RP2
47. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987)
Three-dimensional reconstruction from a single-exposure, random conical
tilt series applied to the 50S ribosomal subunit of Escherichia coli. J.
Microsc. 146, 113-136
48. Radermacher, M. (1980) Dreidimensionale Rekonstruktion bei kegelf
246;rmiger Kippung im Elektronenmikroskop. Thesis, Technical University,
Munich.
49. Frank, J., and Shimkin, B. (1978) A new image processing software
system for structural analysis and contrast enhancement. In: Proc. 9th
Intern. Congr. on Electron Microscopy, Ed. J.M. Sturgess (Microscopical Soc.
Canada, Toronto, Ontario, 1978) I, 210
50. Frank, J., Shimkin, B., and Dowse, H. (1981) SPIDER-A modular
software system for electron image processing. Ultramicroscopy 6, 343-357
51. Burton, E. F., and Oliver, W. F. (1935) X-Ray diffraction patterns of
ice. Nature 135, 505-506
52. Dowell, L. G., and Rinfret, A. P. (1960) Low-temperature forms of ice
as studied by X-ray diffraction.
Nature 188, 1144-1148
53. Brüggeller, P., and Mayer, E. (1980) Complete vitrification in pure
liquid water and dilute aqueous solutions. Nature 288, 569-571
54. Jenniskens, P., and Blake, D. F. (1994) Structural transitions in
amorphous water ice and astrophysical implications. Science 265, 753-756
55. Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J.,
McDowall, A. W., and Schultz, P. (1988) Cryo-electron microscopy of
vitrified specimens. Q. Rev. Biophys. 21, 129-228
56. Dubochet, J., and McDowall, A. W. (1981) Vitrification of pure water
for electron microscopy.
J. Microsc. 124, 3-4
57. Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984)
Cryo-electron microscopy of viruses.
Nature 308, 32-36
58. Lepault, J., Booy, F. P., and Dubochet, J. (1983) Electron microscopy
of frozen biological suspensions.
J. Microsc. 129, 89-102
59. Dubochet, J., Chang, J. J., Freeman, R., Lepault, J., and McDowall, A
. W. (1982) Frozen aqueous suspensions. Ultramicroscopy 10, 55-61
60. Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A., and Homo, J.
C. (1982) Electron microscopy of frozen water and aqueous solutions. J.
Microsc. 128, 219-237
61. Dubochet, J., Adrian, M., Lepault, J., and McDowall, A. W. (1985)
Emerging techniques: Cryo-electron microscopy of vitrified biological
specimens. Trends Biochem. Sci. 10, 143-146
62. Faruqi, A. R., Cattermole, D. M., and Raeburn, C. (2003) Direct
electron detection methods in electron microscopy. Nuclear Instruments and
Methods in Physics Research, A 513, 317-321
63. Faruqi, A. R., Henderson, R., Pryddetch, M., Allport, P., and Evans,
A. (2005) Direct single electron detection with a CMOS detector for electron
microscopy. Nuclear Instruments and Methods in Physics Research, A 546, 170
-175
64. Xuong, N. H., Milazzo, A. C., Leblanc, P., Duttweiler, F., Bouwer, J.
, Peltier, S., Ellisman, M., Denes, P., Bieser, F., Matis, H. S., Wieman, H.
, and Kleinfelder, S. (2004) First use of a high sensitivity active pixel
sensor array as a detector for electron microscopy. In Proceedings of SPIE -
the International Society for Optical Engineering
65. Milazzo, A. C., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J. C.,
Peltier, S., Ellisman, M., Bieser, F., Matis, H. S., Wieman, H., Denes, P.,
Kleinfelder, S., and Xuong, N. H. (2005) Active pixel sensor array as a
detector for electron microscopy. Ultramicroscopy 104, 152-159
66. McMullan, G., Faruqi, A. R., and Henderson, R. (2016) Direct
electrondetectors. In Methods in Enzymology (Crowther, R. A. ed.), Academic
Press. pp 1-17
67. Li, X., Mooney, P., Zheng, S., Booth, C. R., Braunfeld, M. B.,
Gubbens, S., Agard, D. A., and Cheng, Y. (2013) Electron counting and beam-
induced motion correction enable near-atomic-resolution single- particle
cryo-EM. Nature Methods 10, 584-590
68. McMullan, G., Clark, A. T., Turchetta, R., and Faruqi, A. R. (2009)
Enhanced imaging in low dose electron microscopy using electron counting.
Ultramicroscopy 109, 1411-1416
69. Brilot, A. F., Chen, J. Z., Cheng, A., Pan, J., Harrison, S. C.,
Potter, C. S., Carragher, B., Henderson, R., and Grigorieff, N. (2012) Beam-
induced motion of vitrified specimen on holey carbon film. J. Struct. Biol.
177, 630-637
70. Campbell, M. G., Cheng, A., Brilot, A. F., Moeller, A., Lyumkis, D.,
Veesler, D., Pan, J., Harrison, S. C., Potter, C. S., Carragher, B., and
Grigorieff, N. (2012) Movies of ice-embedded particles enhance resolution in
electron cryo-microscopy. Structure 20, 1823-1828
71. Ripstein, Z. A., and Rubinstein, J. L. (2016) Processing of cryo-EM
movie data. In Methods in Enzymology 579, 103-124
72. Rubinstein, J. L., and Brubaker, M. A. (2015) Alignment of cryo-EM
movies of individual particles by optimization of image translations. J.
Struct. Biol. 192, 188-195
73. Heide, H. G. (1982) Design and operation of cold stages.
Ultramicroscopy 10, 125-154
74. Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M., and Baumeister
, W. (2014) Volta potential phase plate for in-focus phase contrast
transmission electron microscopy. Proc. Natl. Acad. Sci. USA 111, 15635-
15640
75. Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe
, J., Stagg, S., Potter, C. S., and Carragher, B. (2005) Automated molecular
microscopy: The new Leginon system. J. Struct. Biol. 151, 41-60
76. Sigworth, F. J. (1998) A maximum-likelihood approach to single-
particle image refinement. J. Struct. Biol. 122, 328-339
77. Scheres, S. H. W., Gao, H., Valle, M., Herman, G. T., Eggermont, P. P
. B., Frank, J., and Carazo, J. M. (2007) Disentangling conformational
states of macromolecules in 3D-EM through likelihood optimization. Nature
Methods 4, 27-29
78. Liao, M., Cao, E., Julius, D., and Cheng, Y. (2013) Structure of the
TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107-
112
79. Beck, M., and Baumeister, W. (2016) Cryo-electron tomography: can it
reveal the molecular sociology of cells in atomic detail? Trends Cell Biol.
26, 825-837
80. Oikonomou, C. M., and Jensen, G. J. (2017) Cellular electron
cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86,
873-896
81. Rubinstein, J. L. (2017) Cryo-EM captures the dynamics of ion channel
opening. Cell 168, 341-343
82. Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V., and
Stark, H. (2010) Ribosome dynamics and tRNA movement by time-resolved
electron cryomicroscopy. Nature 466, 329-333
83. Hite, R. K., and MacKinnon, R. (2017) Structural titration of Slo2.2,
a Na+-dependent K+ channel. Cell
168, 390-399
84. Zhao, J., Benlekbir, S., and Rubinstein, J. L. (2015) Electron
cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
Nature 521, 241-245
85. Dashti, A., Ben Hail, D., Mashayekhi, G., Schwander, P., des Georges,
A., Frank, J., and Ourmazd, A. (2017) Conformational dynamics and energy
landscapes of ligand binding in RyR1. bioRxiv, DOI: 10.1101/167080
86. Dashti, A., Schwander, P., Langlois, R., Fung, R., Li, W.,
Hosseinizadeh, A., Liao, H. Y., Pallesen, J., Sharma, G., Stupina, V. A.,
Simon, A. E., Dinman, J. D., Frank, J., and Ourmazd, A. (2014) Trajectories
of the ribosome as a Brownian nanomachine. Proc. Natl. Acad. Sci. USA 111,
17492-17497
87. Kühlbrandt, W. (2014) The resolution revolution. Science 343, 1443-
1444