Redian新闻
>
Redis分布式锁真的安全吗?

Redis分布式锁真的安全吗?

公众号新闻

点击上方“芋道源码”,选择“设为星标

管她前浪,还是后浪?

能浪的浪,才是好浪!

每天 10:33 更新文章,每天掉亿点点头发...

源码精品专栏

 
来源:juejin.cn/post/
7137224260862361637

今天我们来聊一聊Redis分布式锁。

首先大家可以先思考一个简单的问题,为什么要使用分布式锁?普通的jvm锁为什么不可以?

这个时候,大家肯定会吧啦吧啦想到一堆,例如java应用属于进程级,不同的ecs中部署相同的应用,他们之间相互独立。

所以,在分布式系统中,当有多个客户端需要获取锁时,我们需要分布式锁。此时,锁是保存在一个共享存储系统中的,可以被多个客户端共享访问和获取。

分布式锁(SET NX)

知道了分布式锁的使用场景,我们来自己简单的实现下分布式锁:

public class IndexController {

    public String deductStock() {

        String lockKey = "lock:product_101";

        //setNx 获取分布式锁
        String clientId = UUID.randomUUID().toString();
        Boolean result = stringRedisTemplate.opsForValue().setIfAbsent(lockKey, clientId, 30, TimeUnit.SECONDS); //jedis.setnx(k,v)
        if (!result) {
            return "error_code";
        }
        try {
            int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // jedis.get("stock")
            if (stock > 0) {
                int realStock = stock - 1;
                stringRedisTemplate.opsForValue().set("stock", realStock + ""); // jedis.set(key,value)
                System.out.println("扣减成功,剩余库存:" + realStock);
            } else {
                System.out.println("扣减失败,库存不足");
            }
        } finally {
            //解锁
            if (clientId.equals(stringRedisTemplate.opsForValue().get(lockKey))) {
                stringRedisTemplate.delete(lockKey);
            }
    }
}

以上代码简单的实现了一个扣减库存的业务逻辑,我们拆开来说下都做了什么事情:

1、首先声明了lockkey,表示我们需要set的keyName

2、其次UUID.randomUUID().toString();生成该次请求的requestId,为什么需要生成这个唯一的UUID,后面在解锁的时候会说到

3、获取分布式锁,通过stringRedisTemplate.opsForValue().setIfAbsent来实现,该语句的意思是如果存在该key则返回false,若不存在则进行key的设置,设置成功后返回true,将当前线程获取的uuid设置成value,给定一个锁的过期时间,防止该线程无限制持久锁导致死锁,也为了防止该服务器突然宕机,导致其他机器的应用无法获取该锁,这个是必须要做的设置,至于过期的时间,可以根据内层业务逻辑的执行时间来决定

4、执行内层的业务逻辑,进行扣库存的操作

5、业务逻辑执行完成后,走到finally的解锁操作,进行解锁操作时,首先我们来判断当前锁的值是否为该线程持有的,防止当前线程执行较慢,导致锁过期,从而删除了其他线程持有的分布式锁,对于该操作,我来举个例子:

  • 时刻1:线程A获取分布式锁,开始执行业务逻辑
  • 时刻2:线程B等待分布式锁释放
  • 时刻3:线程A所在机器IO处理缓慢、GC pause等问题导致处理缓慢
  • 时刻4:线程A依旧处于block状态,锁过期
  • 时刻5:线程B获取分布式锁,开始执行业务逻辑,此时线程A结束block,开始释放锁
  • 时刻6:线程B处理业务逻辑缓慢,线程A释放分布式锁,但是此时释放的是线程B的锁,导致其他线程可以开始获取锁

看到这里,为什么每个请求需要requestId,并且在释放锁的情况下判断是否是当前的requestId是有必要的。

以上,就是一个简单的分布式锁的实现过程。但是你觉得上述实现还存在问题吗?

答案是肯定的。若是在判断完分布式锁的value与requestId之后,锁过期了,依然会存在以上问题。

那么有没有什么办法可以规避以上问题,让我们不需要去完成这些实现,只需要专注于业务逻辑呢?

我们可以使用Redisson,并且Redisson有中文文档,方便英文不好的同学查看(开发团队中有中国的jackygurui)。

接下来我们再把上述代码简单的改造下就可以规避这些问题:

public class IndexController {

    public String deductStock() {

        String lockKey = "lock:product_101";

        //setNx 获取分布式锁
        //String clientId = UUID.randomUUID().toString();
        //Boolean result = stringRedisTemplate.opsForValue().setIfAbsent(lockKey, clientId, 30, TimeUnit.SECONDS); //jedis.setnx(k,v)
        //获取锁对象
        RLock redissonLock = redisson.getLock(lockKey);
        //加分布式锁
        redissonLock.lock();
        try {
            int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // jedis.get("stock")
            if (stock > 0) {
                int realStock = stock - 1;
                stringRedisTemplate.opsForValue().set("stock", realStock + ""); // jedis.set(key,value)
                System.out.println("扣减成功,剩余库存:" + realStock);
            } else {
                System.out.println("扣减失败,库存不足");
            }
        } finally {
            //解锁
            //if (clientId.equals(stringRedisTemplate.opsForValue().get(lockKey))) {
            //    stringRedisTemplate.delete(lockKey);
            //}
            //redisson分布式锁解锁
            redissonLock.unlock();
    }
}

可以看到,使用redisson分布式锁会简单很多,我们通过redissonLock.lock()redissonLock.unlock()解决了这个问题,看到这里,是不是有同学会问,如果服务器宕机了,分布式锁会一直存在吗,也没有去指定过期时间?

redisson分布式锁中有一个watchdog机制,即会给一个leaseTime,默认为30s,到期后锁自动释放,如果一直没有解锁,watchdog机制会一直重新设定锁的过期时间,通过设置TimeTask,延迟10s再次执行锁续命,将锁的过期时间重置为30s。下面就从redisson.lock()的源码来看下:

lock的最终加锁方法:

<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
        internalLockLeaseTime = unit.toMillis(leaseTime);

        return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
                "if (redis.call('exists', KEYS[1]) == 0) then " +
                        "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                        "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                        "return nil; " +
                        "end; " +
                        "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                        "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                        "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                        "return nil; " +
                        "end; " +
                        "return redis.call('pttl', KEYS[1]);",
                Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
    }

可以看到lua脚本中redis.call('pexpire', KEYS[1], ARGV[1]);对key进行设置,并给定了一个internalLockLeaseTime,给定的internalLockLeaseTime就是默认的加锁时间,为30s。

接下来我们在看下锁续命的源码:

private void scheduleExpirationRenewal(final long threadId) {
        if (!expirationRenewalMap.containsKey(this.getEntryName())) {
            Timeout task = this.commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
                public void run(Timeout timeout) throws Exception {
                    //重新设置锁过期时间
                    RFuture<Boolean> future = RedissonLock.this.commandExecutor.evalWriteAsync(RedissonLock.this.getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN, "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then redis.call('pexpire', KEYS[1], ARGV[1]); return 1; end; return 0;", Collections.singletonList(RedissonLock.this.getName()), new Object[]{RedissonLock.this.internalLockLeaseTime, RedissonLock.this.getLockName(threadId)});
                    future.addListener(new FutureListener<Boolean>() {
                        public void operationComplete(Future<Boolean> future) throws Exception {
                            RedissonLock.expirationRenewalMap.remove(RedissonLock.this.getEntryName());
                            if (!future.isSuccess()) {
                                RedissonLock.log.error("Can't update lock " + RedissonLock.this.getName() + " expiration", future.cause());
                            } else {
                                //获取方法调用的结果
                                if ((Boolean)future.getNow()) {
                                    //进行递归调用
                                    RedissonLock.this.scheduleExpirationRenewal(threadId);
                                }

                            }
                        }
                    });
                }
            //延迟 this.internalLockLeaseTime / 3L 再执行run方法
            }, this.internalLockLeaseTime / 3L, TimeUnit.MILLISECONDS);
            if (expirationRenewalMap.putIfAbsent(this.getEntryName(), task) != null) {
                task.cancel();
            }

        }
    }

从源码层可以看到,加锁成功后,会延迟10s执行task中的run方法,然后在run方法里面执行锁过期时间的重置,如果时间重置成功,则继续递归调用该方法,延迟10s后进行锁续命,若重置锁时间失败,则可能表示锁已释放,退出该方法。

以上,就是关于一个redis分布式锁的说明,看到这里,大家应该对分布式锁有一个大致的了解了。

但是尽管使用了redisson完成分布式锁的实现,对于分布式锁是否还存在问题,分布式锁真的安全吗?

一般的,线上的环境肯定使用redis cluster,如果数据量不大,也会使用的redis sentinal。那么就存在主从复制的问题,那么是否会存在这种情况,在主库设置了分布式锁,但是可能由于网络或其他原因导致数据还没有同步到从库,此时主库宕机,选择从库作为主库,新主库中并没有该锁的信息,其他线程又可以进行锁申请,造成了发生线程安全问题的可能。

为了解决这个问题,redis的作者实现了redlock,基于redlock的实现有很大的争论,并且现在已经弃用了,但是我们还是需要了解下原理,以及之后基于这些问题的解决方案。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://gitee.com/zhijiantianya/ruoyi-vue-pro
  • 视频教程:https://doc.iocoder.cn/video/

分布式锁Redlock

Redlock是基于单Redis节点的分布式锁在failover的时候会产生解决不了的安全性问题而产生的,基于N个完全独立的Redis节点。

下面我来看下redlock获取锁的过程:

运行Redlock算法的客户端依次执行下面各个步骤,来完成获取锁 的操作:

  1. 获取当前时间(毫秒数)。
  2. 按顺序依次向N个Redis节点执行获取锁 的操作。这个获取操作跟前面基于单Redis节点的获取锁 的过程相同,包含随机字符串my_random_value,也包含过期时间(比如PX 30000,即锁的有效时间)。为了保证在某个Redis节点不可用的时候算法能够继续运行,这个获取锁 的操作还有一个超时时间(time out),它要远小于锁的有效时间(几十毫秒量级)。客户端在向某个Redis节点获取锁失败以后,应该立即尝试下一个Redis节点。这里的失败,应该包含任何类型的失败,比如该Redis节点不可用,或者该Redis节点上的锁已经被其它客户端持有
  3. 计算整个获取锁的过程总共消耗了多长时间,计算方法是用当前时间减去第1步记录的时间。如果客户端从大多数Redis节点(>= N/2+1)成功获取到了锁,并且获取锁总共消耗的时间没有超过锁的有效时间(lock validity time),那么这时客户端才认为最终获取锁成功;否则,认为最终获取锁失败。
  4. 如果最终获取锁成功了,那么这个锁的有效时间应该重新计算,它等于最初的锁的有效时间减去第3步计算出来的获取锁消耗的时间。
  5. 如果最终获取锁失败了(可能由于获取到锁的Redis节点个数少于N/2+1,或者整个获取锁的过程消耗的时间超过了锁的最初有效时间),那么客户端应该立即向所有Redis节点发起释放锁 的操作。

好了,了解了redlock获取锁的机制之后,我们再来讨论下redlock会有哪些问题:

问题一:

假设一共有5个Redis节点:A, B, C, D, E。设想发生了如下的事件序列:

  1. 客户端1成功锁住了A, B, C,获取锁 成功(但D和E没有锁住)。
  2. 节点C崩溃重启了,但客户端1在C上加的锁没有持久化下来,丢失了。
  3. 节点C重启后,客户端2锁住了C, D, E,获取锁 成功。

这样,客户端1和客户端2同时获得了锁(针对同一资源)。

在默认情况下,Redis的AOF持久化方式是每秒写一次磁盘(即执行fsync),因此最坏情况下可能丢失1秒的数据。为了尽可能不丢数据,Redis允许设置成每次修改数据都进行fsync,但这会降低性能。当然,即使执行了fsync也仍然有可能丢失数据(这取决于系统而不是Redis的实现)。所以,上面分析的由于节点重启引发的锁失效问题,总是有可能出现的。为了应对这一问题,Redis作者antirez又提出了延迟重启 (delayed restarts)的概念。也就是说,一个节点崩溃后,先不立即重启它,而是等待一段时间再重启,这段时间应该大于锁的有效时间(lock validity time)。这样的话,这个节点在重启前所参与的锁都会过期,它在重启后就不会对现有的锁造成影响。

关于Redlock还有一点细节值得拿出来分析一下:在最后释放锁 的时候,antirez在算法描述中特别强调,客户端应该向所有Redis节点发起释放锁 的操作。也就是说,即使当时向某个节点获取锁没有成功,在释放锁的时候也不应该漏掉这个节点。这是为什么呢?设想这样一种情况,客户端发给某个Redis节点的获取锁 的请求成功到达了该Redis节点,这个节点也成功执行了SET操作,但是它返回给客户端的响应包却丢失了。这在客户端看来,获取锁的请求由于超时而失败了,但在Redis这边看来,加锁已经成功了。因此,释放锁的时候,客户端也应该对当时获取锁失败的那些Redis节点同样发起请求。实际上,这种情况在异步通信模型中是有可能发生的:客户端向服务器通信是正常的,但反方向却是有问题的。

所以,如果不进行延迟重启,或者对于同一个主节点进行多个从节点的备份,并要求从节点的同步必须实时跟住主节点,也就是说需要配置redis从库的同步策略,将延迟设置为最小(主从同步是异步进行的),通过min-replicas-max-lag(旧版本的redis使用min-slaves-max-lag)来设置主从库间进行数据复制时,从库给主库发送 ACK 消息的最大延迟(以秒为单位),也就是说,这个值需要设置为0,否则都有可能出现延迟,但是这个实际上在redis中是不存在的,min-replicas-max-lag设置为0,就代表着这个配置不生效。redis本身是为了高效而存在的,如果因为需要保证业务的准确性而使用,大大降低了redis的性能,建议使用的别的方式。

问题二:

如果客户端长期阻塞导致锁过期,那么它接下来访问共享资源就不安全了(没有了锁的保护)。在RedLock中还是存在该问题的。

虽然在获取锁之后Redlock会去判断锁的有效性,如果锁过期了,则会再去重新拿锁。但是如果发生在获取锁之后,那么该有效性都得不到保障了。

在上面的时序图中,假设锁服务本身是没有问题的,它总是能保证任一时刻最多只有一个客户端获得锁。上图中出现的lease这个词可以暂且认为就等同于一个带有自动过期功能的锁。客户端1在获得锁之后发生了很长时间的GC pause,在此期间,它获得的锁过期了,而客户端2获得了锁。当客户端1从GC pause中恢复过来的时候,它不知道自己持有的锁已经过期了,它依然向共享资源(上图中是一个存储服务)发起了写数据请求,而这时锁实际上被客户端2持有,因此两个客户端的写请求就有可能冲突(锁的互斥作用失效了)。

初看上去,有人可能会说,既然客户端1从GC pause中恢复过来以后不知道自己持有的锁已经过期了,那么它可以在访问共享资源之前先判断一下锁是否过期。但仔细想想,这丝毫也没有帮助。因为GC pause可能发生在任意时刻,也许恰好在判断完之后。

也有人会说,如果客户端使用没有GC的语言来实现,是不是就没有这个问题呢?质疑者Martin指出,系统环境太复杂,仍然有很多原因导致进程的pause,比如虚存造成的缺页故障(page fault),再比如CPU资源的竞争。即使不考虑进程pause的情况,网络延迟也仍然会造成类似的结果。

总结起来就是说,即使锁服务本身是没有问题的,而仅仅是客户端有长时间的pause或网络延迟,仍然会造成两个客户端同时访问共享资源的冲突情况发生。

那怎么解决这个问题呢?Martin给出了一种方法,称为fencing token。fencing token是一个单调递增的数字,当客户端成功获取锁的时候它随同锁一起返回给客户端。而客户端访问共享资源的时候带着这个fencing token,这样提供共享资源的服务就能根据它进行检查,拒绝掉延迟到来的访问请求(避免了冲突)。如下图:

在上图中,客户端1先获取到的锁,因此有一个较小的fencing token,等于33,而客户端2后获取到的锁,有一个较大的fencing token,等于34。客户端1从GC pause中恢复过来之后,依然是向存储服务发送访问请求,但是带了fencing token = 33。存储服务发现它之前已经处理过34的请求,所以会拒绝掉这次33的请求。这样就避免了冲突。

但是,对于客户端和资源服务器之间的延迟(即发生在算法第3步之后的延迟),antirez是承认所有的分布式锁的实现,包括Redlock,是没有什么好办法来应对的。包括在我们到生产环境中,无法避免分布式锁超时。

在讨论中,有人提出客户端1和客户端2都发生了GC pause,两个fencing token都延迟了,它们几乎同时到达了文件服务器,而且保持了顺序。那么,我们新加入的判断逻辑,即判断fencing token的合理性,应该对两个请求都会放过,而放过之后它们几乎同时在操作文件,还是冲突了。既然Martin宣称fencing token能保证分布式锁的正确性,那么上面这种可能的猜测也许是我们理解错了。但是Martin并没有在后面做出解释。

问题三:

Redlock对系统记时(timing)的过分依赖,下面给出一个例子(还是假设有5个Redis节点A, B, C, D, E):

  1. 客户端1从Redis节点A, B, C成功获取了锁(多数节点)。由于网络问题,与D和E通信失败。
  2. 节点C上的时钟发生了向前跳跃,导致它上面维护的锁快速过期。
  3. 客户端2从Redis节点C, D, E成功获取了同一个资源的锁(多数节点)。
  4. 客户端1和客户端2现在都认为自己持有了锁。

上面这种情况之所以有可能发生,本质上是因为Redlock的安全性(safety property)对系统的时钟有比较强的依赖,一旦系统的时钟变得不准确,算法的安全性也就保证不了了。

但是作者反驳到,通过恰当的运维,完全可以避免时钟发生大的跳动,而Redlock对于时钟的要求在现实系统中是完全可以满足的。哪怕是手动修改时钟这种人为原因,不要那么做就是了。否则的话,都会出现问题。

说了这么多关于Redlock的问题,到底有没有什么分布式锁能保证安全性呢?我们接下来再来看看ZooKeeper分布式锁。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://gitee.com/zhijiantianya/yudao-cloud
  • 视频教程:https://doc.iocoder.cn/video/

基于ZooKeeper的分布式锁更安全吗?

很多人(也包括Martin在内)都认为,如果你想构建一个更安全的分布式锁,那么应该使用ZooKeeper,而不是Redis。那么,为了对比的目的,让我们先暂时脱离开本文的题目,讨论一下基于ZooKeeper的分布式锁能提供绝对的安全吗?它需要fencing token机制的保护吗?

Flavio Junqueira是ZooKeeper的作者之一,他的这篇blog就写在Martin和antirez发生争论的那几天。他在文中给出了一个基于ZooKeeper构建分布式锁的描述(当然这不是唯一的方式):

  • 客户端尝试创建一个znode节点,比如/lock。那么第一个客户端就创建成功了,相当于拿到了锁;而其它的客户端会创建失败(znode已存在),获取锁失败。
  • 持有锁的客户端访问共享资源完成后,将znode删掉,这样其它客户端接下来就能来获取锁了。
  • znode应该被创建成ephemeral的。这是znode的一个特性,它保证如果创建znode的那个客户端崩溃了,那么相应的znode会被自动删除。这保证了锁一定会被释放。

看起来这个锁相当完美,没有Redlock过期时间的问题,而且能在需要的时候让锁自动释放。但仔细考察的话,并不尽然。

ZooKeeper是怎么检测出某个客户端已经崩溃了呢?实际上,每个客户端都与ZooKeeper的某台服务器维护着一个Session,这个Session依赖定期的心跳(heartbeat)来维持。如果ZooKeeper长时间收不到客户端的心跳(这个时间称为Sesion的过期时间),那么它就认为Session过期了,通过这个Session所创建的所有的ephemeral类型的znode节点都会被自动删除。

设想如下的执行序列:

  1. 客户端1创建了znode节点/lock,获得了锁。
  2. 客户端1进入了长时间的GC pause。
  3. 客户端1连接到ZooKeeper的Session过期了。znode节点/lock被自动删除。
  4. 客户端2创建了znode节点/lock,从而获得了锁。
  5. 客户端1从GC pause中恢复过来,它仍然认为自己持有锁。

最后,客户端1和客户端2都认为自己持有了锁,冲突了。这与之前Martin在文章中描述的由于GC pause导致的分布式锁失效的情况类似。

看起来,用ZooKeeper实现的分布式锁也不一定就是安全的。该有的问题它还是有。但是,ZooKeeper作为一个专门为分布式应用提供方案的框架,它提供了一些非常好的特性,是Redis之类的方案所没有的。像前面提到的ephemeral类型的znode自动删除的功能就是一个例子。

还有一个很有用的特性是ZooKeeper的watch机制。这个机制可以这样来使用,比如当客户端试图创建/lock的时候,发现它已经存在了,这时候创建失败,但客户端不一定就此对外宣告获取锁失败。客户端可以进入一种等待状态,等待当/lock节点被删除的时候,ZooKeeper通过watch机制通知它,这样它就可以继续完成创建操作(获取锁)。这可以让分布式锁在客户端用起来就像一个本地的锁一样:加锁失败就阻塞住,直到获取到锁为止。这样的特性Redlock就无法实现。

小结一下,基于ZooKeeper的锁和基于Redis的锁相比在实现特性上有两个不同:

  • 在正常情况下,客户端可以持有锁任意长的时间,这可以确保它做完所有需要的资源访问操作之后再释放锁。这避免了基于Redis的锁对于有效时间(lock validity time)到底设置多长的两难问题。实际上,基于ZooKeeper的锁是依靠Session(心跳)来维持锁的持有状态的,而Redis不支持Session。
  • 基于ZooKeeper的锁支持在获取锁失败之后等待锁重新释放的事件。这让客户端对锁的使用更加灵活。

总结

综上所述,我们可以得出两种结论:

  • 如果仅是为了效率(efficiency),那么你可以自己选择你喜欢的一种分布式锁的实现。当然,你需要清楚地知道它在安全性上有哪些不足,以及它会带来什么后果,这也是为什么我们需要了解实现原理的原因,大多数情况下不会出问题,但是就万一的情况,处理起来可能需要大量的时间定位问题。
  • 如果你是为了正确性(correctness),那么请慎之又慎。就目前来说ZooKeeper的分布锁相对于redlock更加合理。

最后,由于redlock的出现其实是为了保证分布式锁的可靠性,但是由于实现的种种问题其可靠性并没有ZooKeeper分布式锁来的高,对于可容错的希望效率的场景下,redis分布式锁又可以完全满足,这也是导致了redlock被弃用的原因。

参考: http://zhangtielei.com/posts/blog-redlock-reasoning.html



欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢

已在知识星球更新源码解析如下:

最近更新《芋道 SpringBoot 2.X 入门》系列,已经 101 余篇,覆盖了 MyBatis、Redis、MongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka、性能测试等等内容。

提供近 3W 行代码的 SpringBoot 示例,以及超 4W 行代码的电商微服务项目。

获取方式:点“在看”,关注公众号并回复 666 领取,更多内容陆续奉上。

文章有帮助的话,在看,转发吧。

谢谢支持哟 (*^__^*)

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
MySQL 分布式事务的“路”与“坑”一文看懂分布式链路监控系统水军洗地、网络诈骗,你真的安全吗?畅游法国(13)-新教的热土丁公陶文释读一针顶多针!打联合疫苗真的安全吗?分布式定时调度:xxl-job 万字详解10月28日9:00,H. Vincent Poor教授分享当无线网络边缘“遇上”分布式机器学习支撑千亿级日交易额,平安科技分布式数据库架构设计大规模GNN如何学习?北邮最新《分布式图神经网络训练》综述,35页pdf阐述分布式GNN训练算法和系统最小可行架构注意事项:必须考虑分布式处理和数据的位置单体架构服务转型至分布式的踩坑经历活动回顾 | H. Vincent Poor 教授:当无线网络边缘“遇上”分布式机器学习VLDB 2023 | 北大河图发布分布式训练神器Galvatron,一键实现大模型高效自动并行美丽的中法混血继母2-解放前后(多图)惨案!老板要求单体架构转型分布式踩坑!MLPerf排名榜刷新:相同GPU配置训练BERT,飞桨用分布式技术拿下世界第一保利联手碧桂园,为什么要做分布式光伏?开源如何构建分布式信任 | Linux 中国聊一聊分布式锁的设计模型VLDB 2023 | 北大河图发布分布式训练神器Galvatron, 一键实现大模型高效自动并行干货:分布式数据库技术路线及方案分类十问数据安全:我们的手机安全吗?为什么总感觉被“偷听”?分布式追踪与监控:Skywalking介绍渔歌子 :天涯海角赤子心隆基HPBC电池“横空出世” 光伏大厂逐鹿分布式Go基础会了怎么进阶?可以动手搞下这个分布式实战 | 极客时间[电脑] 广覆盖高速率——华硕灵耀 Pro AX11000 分布式路由开箱简测香港中文大学(深圳)数据科学学院招聘博士后 - 分布式优化和机器学习方向分布式存储:三种主流形态及主要场景多彩多姿利古里亚-- Spezia与拜伦和雪莱文末送书 | 从0到1全面探讨分布式人工智能:理论、算法与实践美国留学“城市安全”红榜!你的学校安全吗?一个轻量级的分布式日志标记追踪神器,十分钟接入,非常好用!研发分布式储能与智能电网系统,「云能魔方」完成数千万元天使轮融资丨36氪首发
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。