Redian新闻
>
超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet

超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—> CV 微信技术交流群

转载自:AIWalker

Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition

本文旨在通过充分利用卷积探索一种更高效的编码空域特征的方式:通过组合ConvNet与ViT的设计理念,本文利用卷积调制操作对自注意力进行了简化,进而构建了一种新的ConvNet架构Conv2Former。ImageNet分类、COCO检测以及ADE20K分割任务上的实验结果表明:所提Conv2Former取得了优于主流ConvNet(如ConvNeXt)、ViT(如Swin Transformer)的性能。

本文方案

上图给出了本文方案架构示意图,类似ConvNeXt、SwinT,Conv2Former采用了金字塔架构,即含四个阶段、四种不同尺寸的特征,相邻阶段之间通过Patch Embedding模块(其实就是一个卷积核与stride均为的卷积)进行特征空间分辨率与通道维度的恶变换。下表给出了不同大小Conv2Former的超参配置,

核心模块

上图给出了经典模块的架构示意图,从经典的残差模块到自注意力模块,再到新一代卷积模块。自注意力模块可以表示为如下形式:

尽管注意力可以更好的编码空域相关性,但其计算复杂性随N而爆炸性增长。

本文则旨在对自注意力进行简化:采用卷积特征对V进行调制。假设输入,所提卷积调制模块描述如下:

需要注意的是:上式中表示Hadamard乘积。上述卷积调制模块使得每个位置的元素与其近邻相关,而通道间的信息聚合则可以通过线性层实现。下面给出了该核心模块的实现代码。

class ConvMod(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.norm 
= LayerNorm(dim, eps=1e-6, data_format='channel_first')
        self.a = nn.Sequential(
            nn.Conv2d(dim, dim, 1),
            nn.GELU(),
            nn.Conv2d(dim, dim, 11, padding=5, groups=dim)
        )
        self.v = nn.Conv2d(dim, dim, 1)
        self.proj = nn.Conv2d(dim, dim, 1)
    
    def forward(self, x):
        B, C, H, W = x.shape
        x = self.norm(x)
        a = self.a(x)
        v = self.v(x)
        x = a * v
        x = self.proj(x)
        return x

微观设计理念

Larger Kernel than    如何更好的利用卷积对于CNN设计非常重要!自从VGG、ResNet以来,卷积成为ConvNet的标准选择;Xception引入了深度分离卷积打破了该局面;再后来,ConvNeXt表明卷积核从3提升到7可以进一步改善模型性能。然而,当不采用重参数而进一步提升核尺寸并不会带来性能性能提升,但会导致更高计算负担。

作者认为:ConvNeXt从大于卷积中受益极小的原因在于使用空域卷积的方式。对于Conv2Former,从,伴随核尺寸的提升可以观察到Conv2Former性能一致提升。该现象不仅发生在Conv2Former-T(),同样在Conv2Former-B得到了体现()。考虑到模型效率,作者将默认尺寸设置为

Weighting Strategy 正如前面图示可以看到:作者采用Depthwise卷积的输出对特征V进行加权调制。需要注意的是,在Hadamard乘积之前并未添加任务规范化层(如Sigmoid、),而这是取得优异性能的重要因素(类似SENet添加Sigmoid会导致性能下降超0.5%)。

Normalization and Activations 对于规范化层,作者参考ViT与ConvNeXt采用了Layer Normalization,而非卷积网络中常用的Batch Normalization;对于激活层,作者采用了GELU(作者发现,LN+GELU组合可以带来0.1%-0.2%的性能提升)。

本文实验

上述两表给出了ImageNet分类任务上不同方案的性能对比,从中可以看到:

  • 在tiny-size(<30M)方面,相比ConvNeXt-T与SwinT-T,Conv2Former-T分别取得了1.1%与1.7%的性能提升。值得称道的是,Conv2Former-N仅需15M参数量+2.2GFLOPs取得了与SwinT-T(28M参数量+4.5GFLOPs)相当的性能。

  • 在base-size方面,相比ConvNeXt-B与SwinT-B,Conv2Former-B仍取得了0.6%与0.9%的性能提升

  • 相比其他主流模型,在相近大小下,所提Conv2Former同样表现更优。值得一提的是,相比EfficientNet-B7,Conv2Former-B精度稍有(84.4% vs 84.3%),但计算量大幅减少(15G vs 37G)。

  • 当采用ImageNet-22K预训练后,Conv2Former的性能可以进一步提升,同时仍比其他方案更优。Conv2Former-L甚至取得了87.7% 的优异指标

采用大核卷积是一种很直接的辅助CNN构建长程相关性的方法,但直接使用大核卷积使得所提模型难以优化。从上表可以看到:当不采用其他训练技术(如重参数、稀疏权值)时,Conv2Former采用时已可取得更好的性能;当采用更大的核时,Conv2Former取得了进一步的性能提升

上表给出了COCO检测任务上不同方案的性能对比,从中可以看到:

  • 在tiny-size方面,相比SwinT-T与ConvNeXt-T,Conv2Former-T取得了2% 的检测指标提升,实例分割指标提升同样超过1%;

  • 当采用Cascade Mask R-CNN框架时,Conv2Former仍具有超1%的性能提升。

  • 当进一步增大模型时,性能优势则变得更为明显;

上表给出了ADE20K分割任务上的性能对比,从中可以看到:

  • 在不同尺度模型下,Conv2Former均具有比SwinT与ConvNeXt更优的性能;

  • 相比ConvNeXt,在tiny尺寸方面性能提升1.3%mIoU,在base尺寸方面性能提升1.1%;

  • 当进一步提升模型尺寸,Conv2Former-L取得了54.3%mIoU,明显优于Swin-L与ConvNeXt-L。

一点疑惑解析

到这里,关于Conv2Former的介绍也就结束了。但是,心里仍有一点疑惑存在:Conv2Former与VAN的区别到底是什么呢?关于VAN的介绍可参考笔者之前的分享:《优于ConvNeXt,南开&清华开源基于大核注意力的VAN架构》。

先来看一下两者的定义,看上去两者并无本质上的区别(均为点乘操作),均为大核卷积注意力

  • VAN:

  • Conv2Former

结合作者开源代码,笔者绘制了上图,左图为Conv2Former核心模块,右图为VAN核心模块。两者差别还是比较明显的!

  • 虽然大核卷积注意力均是其核心,但Conv2Former延续了自注意力的设计范式,大核卷积注意力是其核心;而VAN则是采用传统Bottleneck设计范式大核卷积注意力的作用类似于SE

  • 从大核卷积内在机理来看,Conv2Former仅考虑了的空域建模,而VAN则同时考虑了空域与通道两个维度

  • 在规范化层方面,Conv2Former采用了Transformer一贯的LayerNorm,而VAN则采用了CNN一贯的BatchNorm;

  • 值得一提的是:两者在大核卷积注意力方面均未使用Sigmoid激活函数。两者均发现:使用Sigmoid激活会导致0.2%左右的性能下降。

为更好对比Conv2Former与VAN的性能,特汇总上表(注:GFLOPs列仅汇总了)在Image输入时的计算量Net-1K上的指标进行了对比,可以看到:在同等参数量前提下,两者基本相当,差别仅在0.1%。此外,考虑到作者所提到的“LN+GELU的组合可以带来0.1%-0.2%的性能提升”,两者就算是打成平手了吧,哈哈。

点击进入—> CV 微信技术交流群


CVPR/ECCV 2022论文和代码下载


后台回复:CVPR2022,即可下载CVPR 2022论文和代码开源的论文合集

后台回复:ECCV2022,即可下载CVPR 2022论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


目标检测和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer222,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信号: CVer222,进交流群


CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!


扫码进群

▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
火爆的Transformer,可能是目前最好发论文的神器!(文末附顶会合集)更快更强!EfficientFormerV2来了!一种新的轻量级视觉Transformer全球首个面向遥感任务设计的亿级视觉Transformer大模型畅游法国(23)-王国南大门无需微调!微软亚研院:高效加速大规模视觉 Transformer 密集预测任务的方法7 Papers & Radios | 推理速度比Stable Diffusion快2倍;视觉Transformer统一图像文本扩散模型和Transformer梦幻联动!替换U-Net,一举拿下新SOTA!Meta发布ConvNeXt V2!仅用最简单的卷积架构,性能不输Transformer​NeurIPS 2022 | IPMT:用于小样本语义分割的中间原型挖掘TransformerConvNeXt V2来了,仅用最简单的卷积架构,性能不输Transformer激光雷达还是视觉识别?机器人行业也在争论!|科技前哨Transformer如何做扩散模型?伯克利最新《transformer可扩展扩散模型》论文无需新型token mixer就能SOTA:MetaFormer视觉基线模型开源,刷新ImageNet记录NeurIPS 2022 | 大图上线性复杂度的节点级Transformer马狼,兔狼,黑狼IKEA x OBEGRÄNSAD联名!宜家22年最受瞩目系列开售!统治扩散模型的U-Net要被取代了,谢赛宁等引入Transformer提出DiTCF-ViT:用于视觉Transformer的由粗到细的两阶段动态推理架构 | AAAI 2023NeurlPS 2022 | 用于医学图像分割的类感知生成对抗Transformer扩散模型和Transformer梦幻联动!一举拿下新SOTA,MILA博士:U-Net已死平价买到高级感!IKEA全新 OBEGRÄNSAD系列,全系列都好看!NeurIPS22丨大图上线性复杂度的节点级 Transformer7 Papers & Radios | ECCV 2022最佳论文;Transformer在试错中自主改进超越ConvNeXt!Transformer 风格的卷积网络视觉基线模型Conv2Former囪字源考【庭院种菜】蘑菇土种菜的潜在危害工农红军每月有10几塊大洋吗参数减半、与CLIP一样好,视觉Transformer从像素入手实现图像文本统一Transformer检测神器!detrex:面向DETR系列的目标检测开源框架清华提出首个退化可感知的展开式Transformer|NeurIPS 2022NeurIPS 2022 | 清华提出首个退化可感知的展开式Transformer精度超越ConvNeXt的新CNN!HorNet:通过递归门控卷积实现高效高阶的空间信息交互频频出圈的Transformer,到底有什么魅力!Transformer模仿大脑,在预测大脑成像上超越42个模型,还能够模拟感官与大脑之间的传输火爆的Transformer,可能是目前最好发论文的神器!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。