Redian新闻
>
从局部到全局:语义相似度的测地线距离

从局部到全局:语义相似度的测地线距离

科技

©PaperWeekly 原创 · 作者 | 苏剑林

单位 | 追一科技

研究方向 | NLP、神经网络



前段时间在最近的一篇论文《Unsupervised Opinion Summarization Using Approximate Geodesics》[1] 中学到了一个新的概念,叫做“测地线距离(Geodesic Distance)”,感觉有点意思,特来跟大家分享一下。 

对笔者来说,“新”的不是测地线距离概念本身(以前学黎曼几何的时候就已经接触过了),而是语义相似度领域原来也可以巧妙地构造出测地线距离出来,并在某些场景下发挥作用。如果乐意,我们还可以说这是“流形上的语义相似度”,是不是瞬间就高级了不少?



论文梗概

首先,我们简单总结一下原论文的主要内容。顾名思义,论文的主题是摘要,通常我们的无监督摘要是这样做的:假设文章由 n 个句子 组成,给每个句子设计打分函数 (经典的是 tf-idf 及其变体),然后挑出打分最大的若干个句子作为摘要。
当然,论文做的不是简单的摘要,而是“Opinion Summarization”,这个“Opinion”,我们可以理解为实现给定的主题或者中心 c,摘要应该倾向于抽取出与 c 相关的句子,所以打分函数应该还应该跟 c 有关,即
自从“万物皆 Embedding”后, 的一种主流设计方式就是将句子 和主题 c 都编码为相应的句向量 ,然后用某种距离的倒数作为打分函数:

在这种设计中,句向量的编码模型 和距离函数 都是可设计的空间。原论文在 上都做了一些工作,其中 不是本文关心的内容,暂且略过,有兴趣的读者自行看原论文。至于论文在 上的贡献,就是将常见的简单距离,换成了本文的主题“测地线距离”。



原理分析
为什么要用到测地线距离?这要从我们训练句向量的方案说起。
学习句向量的方式既可以是有监督的,也可以是无监督的。以有监督为例,一般就是正样本对和负样本对做对比学习(参考《CoSENT:比Sentence-BERT更有效的句向量方案》),正样本对就是标记出两个语义基本相同的句子,我们可以认为它们相似度很高,或者距离很小。
问题出在负样本对,作为两个语义不相同的句子,它们可能是特意标记出来的困难样本,也可能是随机挑出来的两个不相关样本,原则上这两种情况应当赋予不同的距离,但实际都只是标记了同一个标签,即“负”。
这就导致了一个结果,我们用句向量算出来的距离数值,理论上是对语义比较相近的句子才比较准确,对于语义差距比较大的句子,距离数值只能够用来区分出正负样本,但不能在邻近范围内做比较。举个例子,我们可以说距离为 1 的比距离为 2 的更相似,也可以说距离为 1 的比距离为 10 的更相似,但没法说距离为 10 的比距离为 11 的更相似,因为距离大了,其绝对数值就不准了。
检索场景下,通常要召回相似度很高(也就是距离很小)的样本,因此直接用简单的距离函数 去检索就行。但是,对于原论文的“Opinion Summarization”场景,要计算的是句子 与主题 c 的距离 ,“句子”与“主题”的相似度就未必很大了(距离偏大),也就是说,它是要在距离相似度偏大的区间做相对比较,这就适合用到测地线距离了。




测地距离

测地线距离,简单来说就是两点之间的最短距离,由于流形未必是平直的,因此该距离未必是两点之间的直线距离(欧式距离),经典例子就是从地球的南极走到北极,我们没法穿过地心走直线,只能沿着地球表面先走到赤道然后再走到南极,走了一条曲线(半圆)距离。 

在局部范围内(此时距离比较小),地球还是平的,所以欧式距离还是可用的,但是放到“南极-北极”、“南极-赤道”这样的大距离就不够准确了,这就跟刚才的语义相似度场景很相似了——已知的距离(比如欧式距离)在近距离内比较准确,在远距离不准确,本质上就是因为流形不是平直的。 

幸运的是,有局部距离就够了,我们将其转化为一个图的问题,可以利用“最短路径”的算法估算出近似的测地线距离。

具体来说,我们可以用现有的距离函数算出每个点与剩余点的距离,然后只保留距离最近的 k 个点(也可以按阈值截断,看具体情况),在它们之间连一条边并标记上距离,这样一来所有点和边构成了一个加权图(我们称之为“k 邻近图”),我们就可以用 Dijkstra 算法来搜索出图上任意两点的最短路径,并计算出它的长度,这就是测地线距离的近似结果。 

总的来说,在“相近点的距离比较准、较远点的距离比较不准”的假设下,我们可以 k 邻近图加最短路径的方法,估算较远点的测地线距离来作为替代品。由于测地线距离考虑了向量空间的流形状况,所以有可能取得比较好的效果(参考原论文的 Table 8)


参考文献

[1] https://arxiv.org/abs/2209.07496


更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:[email protected] 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编



🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧
·
·

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
国美电器被强制执行9677万;亚马逊无人机上岗;爱琴海连日亮相四个项目;TAKAMI内地线下3店开业;沃尔玛入局预制菜|联商头条美本早申藤校+TOP10录取,北京第一梯队公立学校国际部到底谁更胜一筹?如何以「全局视角」了解自我?利用CUR分解加速交互式相似度模型的检索北大研究团队提出凸面镜反射场景语义分割UDA,超越基线10个点!真正人人可用的RPA:实在智能全网首发IPA模式及智能屏幕语义理解技术NeurIPS 2022 | 生成式语义分割新范式GMMSeg,可同时处理闭集和开集识别颠覆三观!谷歌最新研究:用性能差的模型计算「相似度」反而更准?外乡人 - 又被抓获躺歪歪讀本閑書一个奇怪的现象谷歌、OpenAI学者谈AI:语言模型正在努力「攻克」数学亲侄子出演迈克尔·杰克逊,这相似度!!复旦邱锡鹏:语言模型即服务,走向大模型的未来登顶对话式语义解析国际权威榜单SParC和CoSQL,全新多轮对话表格知识预训练模型STAR解读GPT-3的下一个应用:语音诊断阿尔茨海默病​NeurIPS 2022 | IPMT:用于小样本语义分割的中间原型挖掘TransformerCOLING'22 Best Paper | 苏大提出:又快又准的端到端跨语义角色标注作为基于词的图解析“一碗汤的距离”,实现有温度的养老!爱因斯坦的广义相对论或可帮助科学家分析死星对比特币死亡宣告增多 标志周期底部到来ICME 2022 | 通过定位语义块来加速图像分类创立28年、3000家门店,红蜻蜓钱金波:远距离管钱、近距离管人我理解的测试开发与实践总结——新人篇移民局新规则:语言学校将不符合申请学生签证我偷渡中的三个女人(十五)爱因斯坦最伟大的理论通过了迄今最严格的测试学习类实用杂志合集:语数英考试难点,都用日常阅读+积累解决!中科院大佬带队!目标检测和语义分割训练营来了!全程免费!AAAI2023 | 基于统一语义匹配的通用信息抽取框架-USM三文鱼回流高峰期何以为猫?可解释AI从语义层面理解CNN的识别机制博后招募 | 新加坡南洋理工大学S-Lab招募遥感语义分割方向博后/高级工程师NeurIPS 2022 Spotlight|生成式语义分割新范式GMMSeg,可同时处理闭集和开集识别新能源汽车时代,呼唤新的测试方法
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。