Redian新闻
>
陈省身:微积术的发现与发展(为纪念牛顿诞生三百周年而作)

陈省身:微积术的发现与发展(为纪念牛顿诞生三百周年而作)

公众号新闻

转自:和乐数学

如涉版权请加编辑微信iwish89联系

哲学园鸣谢

微积术的发现与发展
(为纪念牛顿诞生三百周年而作)

作者:陈省身

引言

微积术的发现是人类文化史上一件划时代的大事。假使没有微积,我们不能想象近代的科学成何景象。现在我们学习微积,一个中材的人,便可于短期内明了其原理。然而在发现的时候,即使极大的天才,亦须苦心孤诣,暗中摸索,才能获得门径。在我们已经利用了微积方法二百余年后的今日,追溯既往,考察一下它的发现的经过,便知前贤缔造的艰难,远非想像所及。
微积术的发现者,一般公认为牛顿(1642—1727)与莱布尼兹(1646—1716)二人。但照意大利数学史家Castelnuovo的研究[指Guido Castelnuovo的Le origini del calcolo infinitesimale nell'era moderna——和乐数学编注],微积术的发展,从希腊时代一直到近代,是一个绵续的整体,牛顿与莱布尼兹二氏不过在其中走了最重要的一步。这话并没有估低了他们的功绩。在他们以前,所有的微积观念,是零星的。有了他们的工作,微积术才成为一个系统,才能应用到天文、物理、和一切其他科学。

一、牛顿以前的微积观念

用近代的说法,微积的对象,是讨论两个变数间的函数关系。如果采取几何表示,则微分学的基本问题,是作曲线的切线,而积分学的基本问题,是求曲线所包的面积。
要求曲线所包的面积,最容易想到的一个方法,是把面积分成小块,将每小块用一直线形代替,而求各该直线形面积之和。块数愈多,则此和数与所求面积相差愈小。这方法叫做逼尽法(Method of exhaustions),古代的希腊人已经知道,用圆周的内接与外切多边形的面积来求圆周率,和亚几默德[即阿基米德——小编注]之求抛物线的面积,都是著名的例子。
一个与微分学有关而为古代希腊人所知道的观念,是所谓无公约数(Incommensurable quantities)。从有公约数到无公约数,需要一个无穷的手续,即有极限的观念在内。对这观念给一个可靠的基础的是Eudoxus,约在纪元前四百年。
微积术在近代的先驱者,最主要的,当推意人B. Caralieri(1598——1647),法人P. Fermat(1601—1665),英人J. Wallis(1616—1703),与I. Barrow(1630—1677)。
Caralieri是Galileo的学生。他于1635年首创不可分量的方法(Method of indivisibles),他假定线由点组成,体与面则各由面与线组成。点、线、面即分别为线、面、体的不可分量。将此类不可分量相加,所得就是长度、面积、与体积。应用此法,他解决了若干简单问题,并证明关于旋转曲面的的Pappus定理。这是一个粗浅的积分法,较逼尽法为有力。我们现在看他的理论,自然觉得很不严密。但是,我们从下文可以知道,微积分在最初的阶段,也是一个很粗疏的系统。
Fermat,(1636)的贡献,主要在于微分方面,他创一个求函数的极大值与极小值的方法;用近代的说法,此法相当于使函数的微分为零,此法他并推广以求曲线的切线。所以若干法国的数学家,包括J. L. Lagrange,认他是微积术的首创者。
离微积术的发现愈近,相类的例子就愈多。Wallis于1655年出版一书,其中解决了若干长度,面积与体积的问题。他的方法很受Caralieri的影响,他的书中也屡屡表示对于Caralieri的谢意。Barrow是牛顿的先生,数学史家都称赞他是一个天才的数学家。他于1669年出版一书,其中论及由两变数的微分及曲线所成的三角形,即所谓“Barraw的微分三角形”。他并且知道积分与微分是相反的手续,但未利用此结果来解决任何问题。他的工作自然会对牛顿发生重大的影响。
除了以上所举者外,其他如J. Napier,J. Kepler,G. P. Roberral,Torricelli,都有相类的结果。在此不再列举了。
从以上所说,我们不禁要问:牛顿以前已有这许多结果,然则牛顿与莱布尼兹的工作是些什么呢?关于此问,一个英国的科学史家有一个很好的答案,他说:“他们的工作,正是使我们问这个问题。在他们以前,这些结果是零星的。他们最先认出,这些观念的组合,可以成一个巨大的系统,来解决科学上许多重要的问题。”

二、微积术的发现的经过

牛顿发现微积术的时间,大约在1665年左右,当他二十四岁的时候。那年英国发生大疫,剑桥大学临时停课,他就回到故乡Woolsthorpe去,直到1667年才返剑桥。微积的观念大概是在他乡居的时候萌芽的。在他的一篇稿子中,日期是1665年十一月十三日,他解决了以下的问题:“已知若干个动体所经路线的关系,求其速度间的关系”。在此稿件中尚解决了若干个相关的问题,如求曲线的切线等。这些观念,在他1666年十月的一篇稿子中更为成熟。此时氏已能解决十二个问题,其中最重要的是下列的几个:
  1. 求曲线的切线。
  2. 求曲线的曲率。
  3. 已知曲线的面积,求其性质。
  4. 求曲线的面积。
  5. 求曲线的长度。
从这两篇稿子,可见1665与1666两年中牛顿已有了微积分的基本观念。
但是这些结果牛顿当时并没有告诉其他的人。直到1669年六月,他把他的一篇论文,题目叫做:“包含无穷多项的方程式的分析”的,交给他的先生Barrow,他的方法方才为人所知道。Barrow看了此文,自然大为赞赏,就转告皇家学会的秘书Collins,Collins又通知了一些别的人。但这篇文章到了1711年才发表。
牛顿当时所用的名词与符号,与现在所用者不同。他称他的方法为流数术(Method of fluxions)。一个量随时间的变动而变者,称为流量(Flowing quantity),其在一短时间的增加叫做Moment,增加的速度则叫做流数(Fluxion)。如果流量是,则其流数是,其moment是。他的流数符号现在力学书中尚多采用。
莱布尼兹研究微积术较牛顿为晚。他的研究大约是1673年左右开始的。两年之中他解决了微积分上的主要问题。莱氏有一篇遗稿,所标的日子是1675年十月二十九日,他这稿内所建议的微分积分的符号,沿用迄今。这是微积术发展史上很可纪念的一个日子,因为莱氏的符号对于微积术的发展有很大的功绩。
在莱氏有了微积分观念的九年以后,牛顿发现流数术的十九年后,1684年,莱氏发表第一篇关于微积术的论文。那论文载在一种杂志叫做Acta Eruditorum上,全文只六页。文中的名词与符号即是现在所用者。莱氏不愿意别人懂得他的方法,所以写得极难懂。文中包含微分学的若干个基本运算定则,并解决了一个光学的问题。
这个时期的微积只是一组有系统的方法。对于它的基本观念,还没有一个严格的基础。所以在莱氏的论文中,关于一个变数的微分,究竟是无穷小抑是有限数,他并无确定的见解。
许多现在觉得简单的问题,在当时都是经过一番苦心才得到的。比方说,两个变数之积的微分,是否等于它们的微分之积:这样一个问题,莱氏须经过多日的思索,才能答复。对于现在学微积分而觉得困难的人,这故事或者是一个安慰。

三、关于微积术发现的争论

微积术的发现在科学史上是一件不磨的伟绩。适巧两个特出的天才,并世降生,同时开了这秘钥,应该是值得欣幸的。无奈发现者的荣誉太大了,一个科学家到了这个关头,往往也难抱着谦让的态度,再加上了国家的偏见和几个胸襟狭隘的朋友的挑搧,牛顿和莱布尼兹二人对于发现的权利,遂起了一场争论。吾人今日缅怀前哲,犹有遗憾,试略言其经过。
莱氏发表他的微积术论文以后,自然大受赞赏,欧洲大陆上的人都公认他为微积术的发现者。牛顿的友人就很抱不平,一场争端已不可免。直到1699年,一个住在英国的瑞士人,叫做Fatio de Duillier的,在英国皇家学会发表的一篇数学论文里面应用了微积的方法,并且加上了这样一段话:
“著名的莱布尼兹或者会问,我如何知道这些方法的。在1687年左右,我发现了它的基本原则。即使天地间未生莱氏,对于我的应用这些方法,并无影响。……由事实的证据,我认为牛顿是微积术的第一个发明者,至于第二个发明者莱布尼兹是否因袭了牛顿的若干结果,请俟看过牛顿的信件与稿件的人的评判。……”
这种公然的挑战,自然会引起一场争论的。
对于此我们须指出,牛顿和莱布尼兹的关系,一向是很友善的。为了微积术的问题,两人会于1676年左右通过两次信。所以他们互相都知对方的结果,大约是没有问题的。在牛顿的名著Principia(1687)中,他提到了莱氏的微积术,并说明与他的流数术大致相同。
认为莱氏有抄袭牛顿的嫌疑的根据,大约有两点:第一、莱氏会于1673与1676到过伦敦两次,认识了若干英国学术界人士,连Collins在内,所以有看到牛顿的原稿的可能。第二、莱氏在他的第一篇关于微积术的论文中,当解决了若干问题以后,会说:“这只是一种超绝的数学的开端。这种数学可用到最困难与最美丽的问题上。如果没有微分学,或者一种类似的方法,这种问题的解决不能有如此的容易”。这段话中所谓类似的方法,若干人以为就是指牛顿的“流数术”。
我们事后加以判断:以上两个理由都不足证明莱氏的微积术是抄袭牛顿的。
莱氏读了Fatio de Duillier的论文后,自然认为侮辱。便写信向牛顿申诉。信中并指出牛顿会在Principia中承认他亦为微积术的发现者。这信牛顿没有答复。Fatio de Duillier写了一封复信,Acta杂志未给发表,争论遂暂时中止。
到了1704年牛顿出版他的光学,书中包含两节数学,其一关于流数术,其一关于三次曲线的分类。次年一月Leipzig Acta登载此书的一个书评,其中有这样一段:
“……这种微积分的原理,创始者莱布尼兹氏会在本杂志发表。……莱氏的“差数”牛顿用“流数”来替代。这种流数牛顿在其Principia及其他著作中用得很巧妙。恰如Fabri在他的几何学书中用进步运动来替代Caralieri的方法一样。”
我们须要指出,Fabri是一著名的抄袭家,所以这段话很有隐讽牛顿为抄袭者的用意。牛顿自然也这样想,并且疑心莱布尼兹即是该书评的作者。为保全他的荣誉就作文反驳。恰巧此时,牛顿得到一个数学家叫做Keill的帮助。Keill笔锋犀利,对于争辩,很能给牛顿一些裨助。1710年Keill作一文,说牛顿发现了微积术,后来莱氏发表时将符号改了。莱氏读后大愤,把这问题提到英国皇家学会,要求Keill道歉。该会派Keill作一报告,报告中所说对莱氏仍极不利。莱氏遂益怒,再函皇家学会,请求制止这类“卑鄙的言论”。
从此事态益见扩大,到了1712年三月六日皇家学会委派一委员会调查此事。次年一月委员会的报告发表。同一切正式的报告一样,报告中保持一模棱的态度。报告中的结论有二:一、莱氏的微积术与牛顿的流数术本质上是一样的;二、牛顿是第一个发现的人。至于最重要的问题,即莱氏是否抄袭牛顿,报告中避而不谈。
这报告自然解决不了争端。一场激烈的论争,从此展开。狭隘的国家意识,不正确的荣誉观念,使得双方都采取不甚正当的手段,例如,出挑战式的数学问题,发表匿名信等。这场意气之争,直到1716年莱氏死后,才渐告平息。
这论争是科学史上十分不幸的事,其影响对于英国极不利。因为在此时期英国人愤而不读大陆上的数学作品。同时de l'Hospital,Bernoulli兄弟,Euler等正努力发展这门学问,他们的结果,英国未能立刻接受。所以这门学问在英国的发展,一度是相当迟缓的。

四、微积术的发展

在微积分术发展中最有功绩的,当推L. Euler(1707—1783),J. L. Lagrange(1736—1813),A. Cauchy(1789—1857),K. Weierstrass(1815—1897)四人。
我们已经讲过,在牛顿与莱布尼兹手中的微积术,不过是一组有系统的方法,可用来解决一些问题的。这个时期可称为微积的直觉时期。要为微积术立一可靠的基础,须对它的三个基本概念——实数、函数与极限——下一个明确的定义。这种努力,德国的数学家F. Klein称之为数学的算术化。
Euler对于上说的基本概念是很表怀疑的。他只把命分数称为“数”,非命分数他叫做“量”,两种数他并不一体看待。函数在他的书中有时是算式,有时是因变数,至于代表什么函数,在他是一个问题。对于极限观念,他也同样的不一致。我们可以说,他只有此名词,并无观念。所以当他求得
时,他觉得很奇怪。
Lagrange开始了微积术的算术化工作。数对于他仍旧是一个所谓“明显”的观念。函数亦仍是算式,但系可以展成幂级数(Power Series)的算式。这是初步的分析函数的观念。他采用级数的目的,大概是想避免困难的极限观念。用了级数,则微商可定为级数中一次项的系数。在他的手中,级数的运算亦较严格,所以他时常不用无穷多项,而用一个余式(Remainder)来替代。
微积术的算术化,在Cauchy手里才有了长足的进展。有了Cauchy以后,函数才不是算式,而是因变数,极限的观念,才有了可靠的基础。由是积分乃为和数的极限,函数的连续性,无穷级数的收敛,都可利用极限,下一个严格的定义。他的工作,可总括为一个变数的函数论。他所未会解决的问题,是实数的定义与一致收敛性的观念。因为缺乏后一观念,他将一无穷级数逐项求积分,而得到了谬误的结果。
Cauchy手中留待解决的问题,经Weierstrass而有了圆满的答案。从此数学上的一大门类所谓分析数学才告树立,而微积术的算术化问题,才约略告一段落。
于此我们需要认清两点:第一、Weierstrass不过是此时期一学派的代表人物,同时的数学家,如Dirichlet,Dedekind等亦有极重要的贡献。Dedekind的实数论,尤其是一件不朽的贡献。第二、若干问题虽然解决了,因此而引起的新问题却更多而更困难。由G. Cantor的集合论,到近代数学基础论者的Brouwer学派,正显示着一种绵续的进展,其前途发展,当无止境。这些理论的导源,自然是微积术。
民国三十二年一月廿六日
昆明西南联合大学

本文原载于《宇宙》。



微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
2023中国法律服务市场:内生力的复现与升格给黑洞测质量,学会牛顿力学就够了? | 赛先生天文为什么牛顿能解释天体运行,却解释不了一个毛毛虫?工信部优化调整微波通信系统频率 推动我国微波通信产业高质量发展(附解读)中俄文混唱《贝加尔湖畔》,好听到无法自拔我宣布:2023年国自然有救了!都给我锁死这个……(含标书写作)微积分溯源:伟大思想的历程Npj Comput. Mater.: 材料定律—识别与发现的新方法打开趋势跟踪CTA的黑箱:国际市场的表现与经验沙龙预告 | 人口创新力与发展战略养老计划中的抗癌篇-饮食,运动,瑜伽与社交色差:连牛顿都在它上面犯了错Deepin V23上线新功能:实现与 Windows 系统跨端协同澳洲5刀钞票将换下英女王头像,但也不会印查尔斯国王!新钞将这一主题作为纪念..聊聊PCIe设备在系统如何发现与访问?悉尼著名商场本周五将永久停业,这一地标建筑将拆除!为纪念建国200年而建!香港第五家上市SPAC诞生,清科集团参与发起尚学明德美高线上免费公开课---预备微积分、历史写作、英文写作中国80种手艺为纪念退伍军人节,美国驻华大使馆和各领事馆将于11月11日闭馆说说我的拉伸血泪史吧我国氢能产业链现状与发展趋势火热招生中!2022律所领导力与发展战略课程人脑天生会算微积分,并应用于精准控制奔跑,来自MIT团队哎呀,我终于又吃上烤鸭了。。。明天,纪念北京大学音乐传习所成立百周年北大校友原创音乐会邀您云端相聚!30 周年纪念款 ThinkPad X1 Carbon 即将上市,25 周年款用户可获首批购买资格纪念音乐传习所百周年,北京大学校友会原创歌曲《北大梦》发布!中国连锁经营协会:中国连锁企业人才培养与发展报告(2022年)新成员!AP预备微积分即将来临,你了解它吗?牛顿图书馆 2023兔年亚裔春节联欢晚会#国际大屠杀纪念日# 通过公共服务纪念大屠杀幸存者赶超与停滞:反思日本经济转型与发展 | 《财经》书评打造城市文化沃土,唤醒城市DNA | 2022世界城市日之城市文化与发展论坛顺利举行于布为教授:中国麻醉学科的发展成就与今后发展方向
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。