Redian新闻
>
数据量不够怎么办?谷歌机器人大牛:找别人借!

数据量不够怎么办?谷歌机器人大牛:找别人借!

公众号新闻



  新智元报道  

编辑:LRS
【新智元导读】机器人缺数据训练,那就向语言模型「借」一点!

2019年3月,机器学习先驱、强化学习大牛Richard S. Sutton发表了一篇名为「苦涩的教训」(The Bitter Lesson)的文章,曾经轰动一时。

 

Sutton认为过去70年走过人工智能弯路中,「堆算力」可能是我们最终实现有效的通用学习方法,而非人类专家设计的复杂知识。

 

 

最近谷歌AI的研究人员Karol Hausman提出了「苦涩的教训2.0版本」,他认为在机器人之外的领域(比如大型语言模型)中寻找到一种可以大规模「生成数据」的方式,可能是机器人领域这么多年发展下来学到的苦涩教训。

 

 

网友甚至还直接预测出了「苦涩的教训3.0」:当你意识到「基础模型的创造者」比你更有能力对模型进行微调,在大型预训练模型上进行微调的整个想法就不攻自破了。因为微调对他们来说非常便宜,而且他们有更多的计算能力。他们可以直接向客户出售服务,而非向「中介机构」提供API来访问。

 

(扎心了...)

 

Karol Hausman的主要研究方向是使机器人能够在现实环境中基于最少量监督(minimal supervision)获得通用技能。他也是斯坦福大学机器人研究和人工智能专业的兼职教授(adjunct professor)。

 

苦涩的教训2.0

 
在The Bitter Lesson中,Sutton提出:
从历时70年的人工智能研究中可以学到的最大教训是,提升计算量的一般方法是最有效的,而且能大幅提升性能。其根本原因是摩尔定律...
 
理由是这样的:
 
1. 我们还不知道如何构建通用人工智能,但我们知道它需要大量的计算;
2. 我们可以认识到该领域之外的一个趋势: 计算越来越便宜;
3. 让我们致力于开发符合这一趋势的人工智能方法。
 
转过头再来看看机器人技术,众所周知,机器人技术的最大瓶颈是缺乏数据(没有网络规模的机器人动作数据集)。
 
也就是说我们已经假设了仅使用机器人本身不可能为通用机器人的训练生成足够的数据。
 
 
所以我们需要寻求他路,找到其他方式来提供这些数据给机器人。
 
换句话说,我们希望机器人学习驾驭其他领域的进步浪潮,为机器人提供更多的数据。
 
 
所以整个推理过程类似于:
 
1. 我们还不知道如何制造通用机器人,但我们知道它们需要大量的数据;
2. 机器人技术(robitics)之外的趋势是什么?
3. 研究利用这一趋势的机器人学习方法。
 
Karol Hausman将这一领悟称为苦涩的教训2.0(机器人领域限定版)
 
为了避免事后才明白这个教训,我们需要尝试预测第2点中的趋势,并研究利用它的方法。
 
我们正在寻找一种机器人技术之外的趋势(就像摩尔定律也是人工智能领域外的趋势) ,这种技术将为机器人的发展带来更多的数据。
 
鉴于人工智能的最新进展,我认为这一趋势可能是基础模型(foundation models),原因有三:
 
1. 机器人之外的基础模型有着巨大的研究价值,并吸引了大量的研究人员;
2. 基础模型以通过数据和计算进行扩展(scale);
3. 基础模型在理解世界方面正变得越来越强大。
 
 
如果我们把基础模型看作是蒸馏(distilled)出来的互联网规模的数据集,并假定我们可以在机器人技术中利用它们,那基础模型可以提供大量的数据,而这些数据也正是机器人迫切需要以了解周围世界的。
 
总而言之,我认为下一个惨痛的教训可能会是:
 
从70年的人工智能研究中可以学到的最大教训是,利用基础模型的一般方法最终是最有效的。
 
 

吸取教训

 
Karol Hausman同时分享了一些他们利用该教训发表的一些相关研究成果。
 
SayCan
 
大型语言模型可以编码关于世界的丰富的语义知识,但这种知识原则上对于那些旨在执行用自然语言表达的高层次、时间延伸的指令的机器人非常有用。
 
然而,语言模型的一个重大缺陷是它们缺乏上下文基础,这使得它们难以在给定的现实环境中进行决策。
 
 
例如,要求语言模型描述如何清理洒出来的东西可能会生成一个合理的叙述,但它可能不适用于需要在特定环境中执行此任务的特定智能体,如机器人。
 
研究人员提出通过预训练的行为来提供这一基础,这些行为可以被用来微调模型,以提出既可行又适合上下文的自然语言行为。
 
论文链接:https://say-can.github.io/assets/palm_saycan.pdf
项目链接:https://say-can.github.io/
 
机器人可以充当语言模型的「手和眼睛」,而语言模型提供关于任务的高级语义知识。
 
文章中展示了如何将低级任务与大型语言模型相结合,以便语言模型提供执行复杂和时间扩展指令的过程的高级知识,而与这些任务相关的价值函数提供了将这些知识与特定物理环境联系起来所必需的基础。
 
实验中在一些现实世界的机器人任务对该方法进行评估,结果表明,这种方法是能够完成长期的、抽象的、自然语言指令的移动机械手。
 
 
在论文的后续更新PaLM-SayCan中,研究人员发现确实观察到了「苦涩的教训2.0」版本中的行为,即仅通过升级模型中的LLM到更高性能的PaLM,就可以得到1)更好的性能;2)思维链提示;3)处理其他语言的查询。
 
内心独白
 
大型语言模型(LLMs)的推理能力可以应用于自然语言处理以外的领域,如机器人的规划和互动。
 
这些具体的问题要求智能体从多个语义层次上来理解世界:可用的技能组合,这些技能如何影响世界,以及世界的变化如何映射到语言。
 
在具身环境中进行规划的LLMs不仅需要考虑做什么技能,还需要考虑如何和何时做这些技能,而且这些答案可能会随着时间的推移而改变,以回应智能体自己的选择。
 
这项工作研究了在这种具身环境中使用的LLM,在多大程度上可以对通过自然语言提供的反馈源进行推理,而无需任何额外的训练。
 
论文链接:https://arxiv.org/abs/2207.05608
项目链接:https://innermonologue.github.io/
 
文中提出,通过利用环境反馈,LLMs能够形成一种内心独白(inner monologue),使它们能够在机器人控制场景中进行更丰富的处理和计划。
 
实验中研究了各种反馈来源,如成功检测、物体识别、场景描述和人类互动,从结果中可以发现,闭环语言反馈明显改善了三个领域的高水平指令完成情况,包括模拟和真实的桌面重新安排任务以及真实厨房环境中的长距离移动复制任务。
参考资料:
https://www.reddit.com/r/MachineLearning/comments/10aq9id/d_bitter_lesson_20/
https://twitter.com/hausman_k/status/1612509549889744899




微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
总是人手不够,怎么办?能用人工的尽量不用机械,能组织当地群众务工的尽量不用专业施工队伍......新修订的《国家以工代赈管理办法》3月1日起施行文艺是为千千万万劳动人民服务想去名校学平面设计,但时间不够用,怎么办?模型越大,表现越差?谷歌收集了让大模型折戟的任务,还打造了一个新基准南山牛:一九一芽生,九九遍地生|二湘空间 | 二湘空间iPhone内存不够怎么办?5秒教你解决!中国反制后,尹锡悦没想补救,就算没防疫的事,韩国也会找别的茬世界感谢卡塔尔,这个老六找别扭谷歌机器人迈入「交互语言」新纪元!开放命令正确率高达93.5%,开源数据量提升十倍短短三年儿子打入机器人“奥运会”比赛?法拉盛专业级VEX机器人课来啦!F-Droid更新索引格式,数据量降低100倍常常感觉自己不够好,我该怎么办?| 日签Costco人参茶,纯椰子水+几个家常美味,北京糕点机场的吃喝时光~~~Google AI年终总结第六弹:没有波士顿动力的谷歌机器人,发展得怎么样了?MyBatis Plus 解决大数据量查询慢问题邻居王太成了三个娃的单妈-美低端生活(十一)SpringBoot 实现 MySQL 百万级数据量导出并避免 OOM 的解决方案外籍记者们回家过年了,但还没聊够怎么办……双足机器人的最新就业方向:波士顿动力机器人「进厂搬砖」了!SpringBoot 实现 Excel 导入导出,百万数据量,性能爆表!「高新兴机器人」获5000万A轮融资,专注巡逻机器人|36氪首发认养一头牛:从上游“卷”起,科技国潮下的乳企新机遇世间人情皆如是优必选科技冲刺「人形机器人第一股」,中国人形机器人迈入新阶段|氪金·大事件17连板神话终结,大牛股突然闪崩!低估了!机器人都能考上斯坦福!超级AI产品问世!网友惊叹:见证历史!为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!世界首例|阜外医院窦克非团队成功应用微亚医疗血管手术机器人完成世界首例全程机器人辅助冠状动脉造影忘记别人名字怎么办?她曝"这招1秒套出"被赞爆:天才工业机器人企业数量全国第一,江苏省工业机器人产业盘点丨智造者如果大规模使用机器人,我们的制造业怎么办?算力就这么点,如何提升语言模型性能?谷歌想了个新点子机器人会“遁地术”?意大利理工学院蚯蚓仿生机器人可用于探索和救援
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。