视觉RLHF要来了?谷歌复用30年前经典算法,CV引入强化学习
©作者 | 机器之心编辑部
来源 | 机器之心
论文标题:
Tuning computer vision models with task rewards
https://arxiv.org/abs/2302.08242
图 1 展示了一些关键结果,主要包括目标检测、全景分割和图像着色的奖励优化带来的定量和定性改进。该研究所提出的方法在处理各种 CV 任务上简单而有效,证明了它的多功能性和适应性。尽管本文主要采用评估指标形式的奖励,但这些初步结果显示了该方法用来优化计算机视觉模型也不失为一种有效途径,这些模型具有更复杂和更难指定的奖励,例如人的反馈或整体系统性能。
推特网友对这篇文章给了一个比较全面的总结,即本文实现的功能是使用 RL 调整预训练视觉模型。研究的动因是受到 LLM 强化学习成功的启发;其效果是在目标检测、全景分割等方面性能大幅提升。并表示,这项研究可能是实现视觉 RLHF (Reinforcement Learning from Human Feedback)的有效途径。
奖励
问题有了,接下来就是怎么解决了,本文分两步走:首先用最大似然估计对模型进行预训练;然后使用 REINFORCE 算法对模型进行 Tuning 。下面我们看看这两步的具体过程:
算法 2 提供了伪代码,图 3 说明了该过程:
实验结果
接下来我们看看本文提出的方法在视觉任务上的表现。
全景分割
如下表 1 所示,Tuning 过程显著改善了 MLE 模型。视觉检查(visual inspection)后的结果表明,Tuning 后的模型在避免不连贯预测方面更好,特别是对于小尺度物体,可参见图 1。
图 4 给出的定性结果清楚地表明,新模型始终能产生更丰富多彩的图像。
表 3 结果表明,应用所提出的方法可以改进 MLE 模型,这与先前文献中的观察结果一致,证明了该方法针对特定任务风险进行 tuning 的有效性。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:[email protected]
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
微信扫码关注该文公众号作者