Redian新闻
>
南洋理工发布量化交易大师TradeMaster,涵盖15种强化学习算法

南洋理工发布量化交易大师TradeMaster,涵盖15种强化学习算法

公众号新闻

机器之心专栏

机器之心编辑部

南洋理工大学开发了一个基于强化学习的开源平台: TradeMaster— 交易大师。


近日,量化平台大家庭迎来了一位新成员,基于强化学习的开源平台: TradeMaster— 交易大师


TradeMaster 由南洋理工大学开发,是一个涵盖四大金融市场,六大交易场景,15 种强化学习算法以及一系列可视化评价工具的统一的,端到端的,用户友好的量化交易平台!

平台地址: https://github.com/TradeMaster-NTU/TradeMaster

背景介绍

近年来,人工智能技术在量化交易策略中正在占据越来越重要的地位。由于具有在复杂环境中突出的决策能力,将强化学习技术应用于量化交易中任务存在巨大的潜力。然而金融市场的低信噪比和强化学习算法训练不稳定的特点使得强化学习算法目前还无法大规模部署在真实金融市场中,具体挑战如下: 1. 开发流程复杂,包含极大的工程量,难以实现 2. 算法性能高度依赖于测试时的市场状态,风险较高,难以系统评价 3. 算法的设计,优化,和维护有存在较高的技术门槛,难以大规模部署。TradeMaster 的发布为这个领域提供了一款软件工具,一个行业基准和一类工业级产品接口以解决上文中的三个挑战。

TradeMaster 对于产学研用深度融合的潜在贡献

TradeMaster 框架

TradeMaster 由六个核心模块组成,包含了用于量化交易强化学习算法的设计,实现,测试,部署的完整流程,下面我们为大家具体介绍:

TradeMaster 平台的框架结构

数据模块:TradeMaster 提供了长周期多模态 (K 线和订单流) 不同粒度 (分钟级到日级) 的金融数据,涵盖四个主要市场:中国,美国股票,加密货币和外汇。

预处理模块:TradeMaster 提供了标准化的金融时序数据预处理的 pipeline,包含 6 个步骤:1. 数据清洗 2. 数据填充 3. 正则化 4. 自动特征发掘 5. 特征嵌入 6. 特征选择

模拟器模块:TradeMaster 提供了一系列的数据驱动的高质量金融市场模拟器,支持 6 个主流量化交易任务:1. 加密货币交易 2. 资产组合管理 3. 日内交易 4. 订单执行 5. 高频交易 6. 做市

算法模块:TradeMaster 实现了 7 个最新的基于强化学习的交易算法 ( DeepScalper,OPD,DeepTrader,SARL,ETTO,Investor-Imitator,EIIE ) 和 8 个经典强化算法 ( PPO,A2C,Rainbow,SAC,DDPG,DQN,PG,TD3 )。与此同时,TradeMaster 引入了自动化机器学习技术来帮助用户高效的调整训练强化学习算法的超参数。

评价模块:TradeMaster 实现了 17 个评价指标和可视化工具从收益能力,风险控制,多样性,可解释性,鲁棒性,通用型 6 个维度给出系统化的评价。以下是两个例子:

表示收益能力,风险控制,策略多样性的雷达图

金融时序数据可视化

运行流程伪代码

TradeMaster 基于面向对象的编程思想,对不同功能模块进行封装,实现了不同模块之前的功能解偶和封装,具有良好的可扩展性和复用性,具体流程包含如下 6 个步骤


测试结果

以道琼斯 30 指数上的投资组合这一经典任务为例,EIIE 算法在测试集上取得了稳定的正收益和较高的夏普比:



TradeMaster 教程

TradeMaster 提供了一系列针对多个金融市场不同交易任务的强化学习算法教程,通过 Jupyter Notebook 的形式呈现以方便用户快速上手:


详情见:https://github.com/TradeMaster-NTU/TradeMaster/tree/1.0.0/tutorial

基于 TradeMaster 的大型强化学习量化交易算法设计比赛将会在今年年内举行,以帮助大家更好的了解和使用 TradeMaster,尽情期待!



探寻隐私计算最新行业技术,「首届隐语开源社区开放日」报名启程


春暖花开之际,诚邀广大技术开发者&产业用户相聚活动现场,体验数智时代的隐私计算生态建设之旅,一站构建隐私计算产业体系知识:

  • 隐私计算领域焦点之性

  • 分布式计算系统的短板与升级策略

  • 隐私计算跨平台互联互通

  • 隐语开源框架金融行业实战经验

3月29日,北京·798机遇空间,隐语开源社区开放日,期待线下面基。

点击阅读原文,立即报名。

© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
新加坡南洋理工大学物理系苏锐课题组招博士后(半导体光学方向)苏月的婚姻路(完)推荐一本英语语法进阶书!疑难句、段衔接,涵盖语法的方方面面!喜报!新国立、南洋理工、港大、KCL、港城市…|背景提升学员警幻仙姑的人间真容重磅!国家级出行平台“强国交通”将上线,涵盖约车、货运、水运、航运等功能日本啊,日本(二十二)中国寺庙,日本寺庙打卡新加坡南洋理工大学,学校免费巴士少走弯路陌上花开982 穿越人海遇见你丨新加坡南洋理工硕士,甜美可爱,爱好广泛喜报!纽约大学、伦敦政经、曼大、南洋理工、港中文、港科技……达摩院算法团队招聘(实习/博后/全职):机器学习算法工程师,AI for Time Series与AIOps方向第三届 冇(Mǎo)国际青年影像周 开始征片啦!喜报!南加州、EDHEC、新国立、南洋理工、UCL、港大…|背景提升学员喜报!南洋理工、港中文、UCL、哥大、NUS、曼大…|背景提升学员"𝙇𝙚𝙖𝙙 𝙏𝙝𝙚 𝘾𝙝𝙖𝙧𝙜𝙚"广告#创译挑战强化学习中的Transformer发展到哪一步了?清北联合发布TransformRL综述喜报!新国立、爱丁堡、南洋理工、港城市…|背景提升学员杭州内推 | 阿里巴巴淘系搜索算法团队招聘机器学习算法工程师喜报!剑桥、东北大学、曼彻斯特、澳国立、港大、新国立、南洋理工…|背景提升学员深度学习先驱者 Geoffrey Hinton 发布新深度学习算法招聘 | 阿里巴巴淘系搜索算法团队-机器学习算法工程师-社招喜报!新国立、南洋理工、纽约大学、港中文、墨尔本、新南威尔、华威…|背景提升学员HAR推出首付款援助资源库,涵盖德州16.5万个房源CV发论文的机会来了!南洋理工项目招生(仅限深度学习,AI,机器学习,迁移学习方向)这三个字,涵盖了中国人对肉的所有想象超赞!16本阿里云内部爆款书籍,涵盖云原生核心技术栈!运维必看!一文详解缺陷检测的传统算法与深度学习算法(内附16篇前沿论文)Insight Time分享 | 基于序列决策和动作依赖的多智能体强化学习算法加州考虑征收富人税,涵盖搬离者CVPR 2023|哈工大南洋理工提出全球首个「多模态DeepFake检测定位」模型:让AIGC伪造无处可藏新加坡南洋理工大学物理系韩恩道课题诚招全奖博士、博士后新加坡南洋理工大学与德国马普所合作招收博士生、博士后(低维量子材料与器件方向)南洋理工等开源MOSE:复杂场景下的大型视频目标分割数据集毛泽东儿子接受贫下中农再教育哇!五年前我就这么牛了 ?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。