Redian新闻
>
还在为玩不了 ChatGPT 苦恼?这十几个开源平替也能体验智能对话

还在为玩不了 ChatGPT 苦恼?这十几个开源平替也能体验智能对话

公众号新闻

推荐关注↓

转自:机器之心

本文将为大家盘点一下 ChatGPT 的开源平替项目。

距离 ChatGPT 的最初发布,过去差不多四个月的时间了。在这期间,ChatGPT 的惊艳表现,让人直呼 AIGC 是不是要提前实现了。

不过众所周知的一个秘密是,ChatGPT 不大可能开源,加上巨大的算力投入以及海量的训练数据等,都为研究界复制其实现过程设下重重关卡。

面对 ChatGPT 的来势汹汹,开源平替是一个不错的选择,它们在实现相似功能的同时,还能让你通过替代品了解 ChatGPT 的运行机理。

随着技术的进步,现在已经出现了许多其他类似于 ChatGPT 的新 AI 模型。本文我们将为大家盘点一下 ChatGPT 的开源平替项目。内容将分为两部分,一部分为类 ChatGPT 开源项目汇总,另一部分是对该项目汇总的补充。

项目汇总

项目作者 nichtdax 整理了 9 个开源的 ChatGPT 平替项目。接下来会一一介绍。


项目地址:https://github.com/nichtdax/awesome-totally-open-chatgpt

PaLM-rlhf-pytorch

第一个项目是「PaLM-rlhf-pytorch」,项目作者为 Phil Wang。该项目是在 PaLM 架构之上实现 RLHF(人类反馈的强化学习),它基本上是使用 PaLM 的 ChatGPT。

该项目已在 GitHub 上获得了 5.8k 的 Stars。


项目地址:https://github.com/lucidrains/PaLM-rlhf-pytorch

下图为训练流程。


OpenChatKit

第二个项目是「OpenChatKit」,它提供了一个强大的的开源基础,为各种应用程序创建专用和通用的聊天机器人。该 kit 包含了一个经过指令调优的 200 亿参数语言模型、一个 60 亿参数调节模型和一个涵盖自定义存储库最新响应的可扩展检索系统。

OpenChatKit 是在 OIG-43M 训练数据集上训练的,该数据集是 Together、LAION 和 Ontocord.ai 三者的联合。项目作者表示,这不仅仅是一个模型的发布,还是一个开源项目的开始。他们正在发布一套工具和流程,并通过社区贡献持续改进。

该项目已在 GitHub 上获得了 5.7k 的 Stars。


项目地址:https://github.com/togethercomputer/OpenChatKit

text-generation-webui

第三个项目是「text-generation-webui」,它是一个用于运行 GPT-J 6B、OPT、GALACTICA、LLaMA 和 Pygmalion 等大语言模型的 gradio web UI。该项目旨在成为文本生成领域的 AUTOMATIC1111/stable-diffusion-webui。

功能包括使用下拉菜单在不同模型之间切换、提供类似于 OpenAI playground 的笔记本模式、用于对话和角色扮演的聊天模式、为 GPT-4chan 生成漂亮的 HTML 输出等等。

该项目已在 GitHub 上获得了 3.4k 的 Star。


项目地址:https://github.com/oobabooga/text-generation-webui

KoboldAI-Client

第四个项目是「KoboldAI-Client」,它是一个基于浏览器的前端,通过多个本地和远程 AI 模型实现 AI 辅助写作。

KoboldAI-Client 提供了一系列标准的工具,包括内存、作者注释、世界信息、保存 & 加载、可调节的 AI 设置、格式化选项以及导入现有文字冒险游戏《AI Dungeon》的能力。你可以开启 Adventure 模式,也可以玩 AI Dungeon Unleashed 之类的游戏。

该项目已在 GitHub 上获得了 1.4k 的 Stars。


项目地址:https://github.com/KoboldAI/KoboldAI-Client

Open-Assistant

第五个项目是「Open-Assistant」,它旨在让每一个人都可以访问基于聊天的大语言模型。项目作者希望借此在语言创新方面掀起一场革命,就像 stable diffusion 帮助世界以新的方式创造艺术和图像一样。

项目作者计划收集高质量人工生成指令执行样本(指示 + 响应),目标大于 50k。对于收集到的每个指示,他们将采样多个补全结果。接下来进入基于指示和奖励模型的 RLHF 训练阶段。

该项目已在 GitHub 上获得了 19k 的 Stars。


项目地址:https://github.com/LAION-AI/Open-Assistant

stanford_alpaca

第六个项目是「stanford_alpaca」,它旨在建立和共享一个指令遵循的 LLaMA 模型。该 repo 包含了用于微调模型的 52k 数据、用于生成数据的代码以及用于微调模型的代码。

该项目已在 GitHub 上获得了 9.5k 的 Stars。


项目地址:https://github.com/tatsu-lab/stanford_alpaca

ChatRWKV

第七个项目是「ChatRWKV」,它类似于 ChatGPT,但由 RWKV(100% RNN)模型支持,并且是开源的。项目作者表示,RWKV 是目前唯一能在质量和扩展方面媲美 transformers 的 RNN 模型,同时速度更快、节省 VRAM。

该项目已在 GitHub 上获得了 3.5k 的 Stars。


项目地址:https://github.com/BlinkDL/ChatRWKV

ChatGLM-6B

第八个项目是由清华技术成果转化的公司智谱 AI 开源、支持中英双语的对话语言模型「ChatGLM-6B」,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。

ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。

不过由于 ChatGLM-6B 的规模较小,目前已知其具有相当多的局限性,如事实性 / 数学逻辑错误、可能生成有害 / 有偏见内容、较弱的上下文能力、自我认知混乱、以及对英文指示生成与中文指示完全矛盾的内容。

该项目已在 GitHub 上获得了 6k 的 Stars。


项目地址:https://github.com/THUDM/ChatGLM-6B

xmtf

第九个项目是「xmtf」,包含了创建论文《Crosslingual Generalization through Multitask Finetuning》中介绍的 BLOOMZ、mT0 和 xP3 的所有组件。

其中 BLOOMZ 是一个 1760 亿参数且可开放获取的多语言模型;mT0(这里特指谷歌的 T5X);xP3 是 46 种语言的有监督数据集,带有英语和机器翻译的 prompts。


项目地址:https://github.com/bigscience-workshop/xmtf

除了上述提到的模型,ChatGPT 平替项目还包括基于 Meta 开源的大模型系列 LLaMA(Large Language Model Meta AI)的一些研究,这个系列模型的参数量从 70 亿到 650 亿不等。具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达 1750 亿),而且可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。


  • 论文链接:https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/
  • GitHub 链接:https://github.com/facebookresearch/llama

基于此研究,开发者也提出了几个开源项目。

llama.cpp 无需 GPU,就能运行 LLaMA

llama.cpp 项目实现了在 MacBook 上运行 LLaMA,还有开发者成功的在 4GB RAM 的树莓派上运行了 LLaMA 7B。总结而言,即使开发者没有 GPU ,也能运行 LLaMA 模型。


项目地址:https://github.com/ggerganov/llama.cpp

ChatLLaMA

由于 LLaMA 大模型系列没有使用 RLHF 方法,因此初创公司 Nebuly AI 开源了 RLHF 版 LLaMA(ChatLLaMA)的训练方法。它的训练过程类似 ChatGPT,该项目允许基于预训练的 LLaMA 模型构建 ChatGPT 形式的服务。与 ChatGPT 相比,LLaMA 架构更小,但训练过程和单 GPU 推理速度更快,成本更低;该库还支持所有的 LLaMA 模型架构(7B、13B、33B、65B),因此用户可以根据训练时间和推理性能偏好对模型进行微调。


项目地址:https://github.com/nebuly-ai/nebullvm/tree/main/apps/accelerate/chatllama

期待后续更多开源项目加入进来。

参考链接:https://www.reddit.com/r/MachineLearning/comments/11uk8ti/d_totally_open_alternatives_to_chatgpt/



- EOF -




推荐阅读  点击标题可跳转

0、极客专属:几十款程序员秒懂的T恤/卫衣

1、Gmail 之父:有了 ChatGPT,搜索引擎活不过两年了

2、ChatGPT 版必应发飙!怒斥人类:放尊重些

3、划时代!微软发布 ChatGPT 版搜索引擎


关注「程序员的那些事」加星标,不错过圈内事

点赞和在看就是最大的支持❤️

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
2023 除夕夜,简单的年夜饭和这两天吃喝ChatGPT带火AI芯片,赚翻了的英伟达发布新核弹:ChatGPT专用GPU,让推理提速10倍!“特能聊的 ChatGPT”是智能对话技术的下半场吗?| Q推荐开源版ChatGPT来了?多数任务效果超越GPT3,已开源!How did Mao Zedong solve the opium addiction problem?辞旧迎新,卯年吉祥PK chatgpt 的诗评还在为雅思烦恼?跟着这些博主准备起来吧!华尔街交易员为何不担心ChatGPT抢饭碗?ChatGPT:我预测不了市场大型语言模型也能跑在浏览器上了!又一ChatGPT平替诞生,训练成本8.5万美元开发者笑疯了! LLaMa惊天泄露引爆ChatGPT平替狂潮,开源LLM领域变天还在为毕业选刊而烦恼?这8本免费期刊投稿命中率高,不容错过!ChatGPT讲座:ChatGPT并不神秘,但ChatGPT很神奇我们玩不了车,玩不了房子,我们只能够玩头发还在为玩不了ChatGPT苦恼?这十几个开源平替也能体验智能对话集成ChatGPT后必应日活量首破亿!微软推出Azure OpenAI ChatGPT 服务,GPT-4下周发布ChatGPT 开源平替来了,开箱即用!200 亿参数,采用 4300 万条指令集微调模型ChatGPT 的 10 种集成模式:从开源 AI 体验平台 ClickPrompt 中受到的启发品尝玫瑰的浪漫第四范式开源强化学习研究通用框架,支持单智能体、多智能体训练,还可训练自然语言任务!训练速度提升17%调用多个ChatGPT API相互对话,清华开源的多轮对话数据UltraChat来了对话元语智能创始团队:做中国版ChatGPT,为什么坚持大模型开源路线?|甲子光年GPT-4平替来了!华人团队开源miniGPT-4,只需23G显存,画草稿写网站,还能帮你修洗衣机号称可以成为 ChatGPT 平替的开源模型 “Dolly” | Linux 中国厉害了我的 ChatGPT, 弱chatGPT. 一本正经胡说八道微软总裁:中国将是 ChatGPT 的主要对手;Moss 大模型开源;推特正在为百万粉丝账号恢复蓝 V 认证 | 极客早知道ChatGPT 全球最大开源平替:回复更受欢迎,但中文对话一塌糊涂开源LLM领域变天!LLaMa惊天泄露引爆ChatGPT平替狂潮ChatGPT开源平替来了,开箱即用!前OpenAI团队打造,GitHub刚发布就揽获800+星全球最大ChatGPT开源平替来了!支持35种语言,写代码、讲笑话全拿捏Chatgpt 4 要release 了ChatGPT平替「小羊驼」Mac可跑!2行代码单GPU,UC伯克利再发70亿参数开源模型「ChatGPT之母」最新采访:GPT-4离超级智能还很远,半年内不会训练GPT-5回忆往年过春节这是Meta版ChatGPT雏形?开源、一块GPU就能跑,1/10参数量打败GPT-3chatgpt 说顾城剽窃ChatGPT全球最大开源平替:回复更受欢迎,但中文对话一塌糊涂部署国产ChatGPT仅需6G显存!ChatYuan模型开放下载:业内首个功能型对话开源中文大模型Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。