Redian新闻
>
CVPR 2023 | 开源了!一种通用的视频闪烁去除方法

CVPR 2023 | 开源了!一种通用的视频闪烁去除方法

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉】微信技术交流群

转载自:机器之心 | 作者: 雷晨阳、任烜池

该论文成功提出了第一个无需额外指导或了解闪烁的通用去闪烁方法,可以消除各种闪烁伪影。



高质量的视频通常在时间上具有一致性,但由于各种原因,许多视频会出现闪烁。例如,由于一些老相机硬件质量较差,不能将每帧的曝光时间设置为相同,因此旧电影的亮度可能非常不稳定。此外,具有非常短曝光时间的高速相机可以捕捉室内照明的高频率(例如 60 Hz)变化。


将图像算法应用于时间上一致的视频时可能会带来闪烁,例如图像增强、图像上色和风格转换等有效的处理算法。


视频生成方法生成的视频也可能包含闪烁伪影。


由于时间上一致的视频通常更具视觉上的吸引力,从视频中消除闪烁在视频处理和计算摄影领域中非常受欢迎。


该 CVPR 2023 论文致力于研究一种通用的闪烁去除方法:(1)对于各种闪烁模式或水平均具有较高的泛化性(例如,旧电影、高速相机拍摄的慢动作视频),(2)仅需要一段闪烁视频,并不需要其他辅助信息(例如,闪烁类型、额外的时间一致视频)。由于该方法没有过多假设,它具有广泛的应用场景。

代码链接:https://github.com/ChenyangLEI/All-in-one-Deflicker
项目链接:https://chenyanglei.github.io/deflicker
论文链接:https://arxiv.org/abs/2303.08120

方法

通用的闪烁去除方法很具有挑战性,因为在没有任何额外指导的情况下很难强制整个视频的时间一致性。

现有的技术通常为每种闪烁类型设计特定的策略,并使用特定的知识。例如,对于由高速摄像机拍摄的慢动作视频,之前的工作可以分析照明频率。对于通过图像处理算法处理的视频,盲目视频时域一致性算法可以利用时域上一致的未处理视频上作为参考,从而获得长期的一致性。然而,闪烁类型或未经处理的视频并不总是可用的,因此现有的特定于闪烁的算法无法应用于这种情况。

一个直观的解决方案是使用光流来跟踪对应关系。然而,从闪烁视频中获得的光流不足够准确,光流的累积误差也会随着帧数的增加而增加。

通过两个关键的观察和设计,作者成功提出了一个通用的、无需额外指导的通用去闪烁方法,可以消除各种闪烁伪影。

一种良好的盲去闪烁模型应该具有跟踪所有视频帧之间对应点的能力。视频处理中的多数网络结构只能采用少量帧作为输入,导致感知野较小,无法保证长期一致性。研究者观察到神经图集非常适合闪烁消除任务,因此将引入神经图集到这项任务中。神经图集是视频中所有像素的统一且简洁的表示方式。如图 (a) 所示,设 p 为一个像素,每个像素 p 被输入到映射网络 M 中,该网络预测 2D 坐标(up,vp),表示像素在图集中对应的位置。理想情况下,不同帧之间的对应点应该共享图集中的一个像素,即使输入像素的颜色不同也应该如此。也就是说,这可以确保时间一致性。

其次,虽然从共享的图层中获取的帧是一致的,但图像的结构存在缺陷:神经图层不能轻松地建模具有大运动的动态对象;用于构建图层的光流也不完美。因此,作者们提出了一种神经过滤策略,从有缺陷的图层中挑选好的部分。研究者们训练了一个神经网络来学习两种类型的失真下的不变性,这两种失真分别模拟了图层中的伪影和视频中的闪烁。在测试时,该网络可作为过滤器很好地工作,以保留一致性属性并阻止有缺陷的图层中的伪影。


实验

研究者构建了一个包含各种真实闪烁视频的数据集。广泛的实验表明,在多种类型的闪烁视频上,研究者的方法实现了令人满意的去闪烁效果。研究者的算法甚至在公共基准测试中优于使用额外指导的基线方法。


研究者提供了 (a) 处理的到的闪烁视频和合成的闪烁视频的定量比较,研究者的方法的变形误差比基线要小得多,根据 PSNR,研究者的结果在合成数据上也更接近于真实值。对于其他真实世界视频,研究提供了 (b) 双盲实验以进行比较,大多数用户更喜欢研究者的结果。


如上图所示,研究者的算法可以很好的去除输入视频中的闪烁。注意,第三列图片展示了神经图层的结果,可以观察到明显的缺陷,但是研究者的算法可以很好的利用其一致性又避免引入这些缺陷。

该框架可以去除老电影、AI生成视频中包含的不同类别的闪烁。





点击进入—>【计算机视觉】微信技术交流群


最新CVPP 2023论文和代码下载


后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


目标检测和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信号: CVer333,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!


扫码进星球


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
今年 CV 热点这么多,不可错过 CVPR 2023 线下论文分享会正常人正常交流产生困惑有三种可能,一是说话者表达不清,二是言语有歧义,三是听话的人有歧解。你就是坚持“歧解”的那一类。蜜蜂冬天上哪儿拉屎?蜜蜂屎能做药吗?CVPR 2023 Workshop | 动态点云感知任务挑战赛启动!CVPR 2023 接收结果出炉!再创历史新高!录用2360篇!(附10篇最新论文)CVPR 2023|Crowd3D:数百人大场景3D位置、姿态、形状重建,开源benchmark数据集CVPR 2023 | 北大提出DynamicDet:目标检测器的通用动态架构CVPR 2023 | 北大提出UniDexGrasp:通用灵巧手抓取算法CVPR 2023 | 结合Transformer和CNN的多任务多模态图像融合方法CVPR 2023 Workshop | 首个大规模视频全景分割比赛2022&2023 Subaru Outback 和 2023 Honda CRV Hybrid二选一谷歌没开源的PaLM,网友给开源了!千亿参数微缩版:最大只有10亿,8k上下文CVPR 2023 | 正则化方法DropKey: 两行代码高效缓解视觉Transformer过拟合CVPR 2023 Workshop | 马普所、麻省理工等举办生成模型研讨会杭电小哥抢先搞定GPT读图功能,单卡就能实现新SOTA,代码已开源|CVPR20232023 春 祝姐妹们周末快乐!谷歌推出多模态Vid2Seq,理解视频IQ在线,字幕君不会下线了|CVPR 2023Eruope 2023国际要闻简报,轻松了解天下事(03CVPR 2023|两行代码高效缓解视觉Transformer过拟合,美图&国科大联合提出正则化方法DropKey录用2360篇、接收率25.78%,CVPR 2023接收结果公布CVPR 2023 | 多个扩散模型相互合作,新方法实现多模态人脸生成与编辑CVPR 2023 | YOLOv7强势收录!时隔6年,YOLOv系列再登CVPR!雪鸟日常转:2023 回国探亲(5)CVPR 2023 | 可扩展的视频基础模型预训练范式:训练出首个十亿参数量视频自监督大模型CVPR 2023论文总结!CV最热领域颁给多模态、扩散模型俄罗斯文化塑造了现代中国CVPR 2023 Workshop | 视频增强质量评价挑战赛启动!英伟达新方法入选CVPR 2023:对未知物体的6D姿态追踪和三维重建CVPR 2023 Workshop | 第三届"反无人机"研讨会&挑战赛启动,等你来战!CVPR 2023 | EMA-VFI: 基于帧间注意力提取运动和外观信息的高效视频插帧CVPR2023 | 微软提出高效率大规模图文检索模型CVPR 2023 | 一键去除视频闪烁,该研究提出了一个通用框架CVPR 2023 | 精准、通用、轻量!EqMotion:等变轨迹预测与不变关系推断模型CVPR 2023 | G2SD: 让小模型也能从自监督预训练中受益的蒸馏方法大日本,想说说你不容易CVPR 2023 | 何恺明团队开源FLIP:MAE助力CLIP更快更高精度!CVPR 2023 | 即插即用!BRA:新注意力,BiFormer:一种视觉新主干CVPR 2023 | 港中大&IDEA开源首个大规模全场景人体数据集Human-Art
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。