Redian新闻
>
清华AIR开源轻量版BioMedGPT!聂再清:最终目标是生物医药领域基础大模型

清华AIR开源轻量版BioMedGPT!聂再清:最终目标是生物医药领域基础大模型

科技
衡宇 萧箫 发自 凹非寺
量子位 | 公众号 QbitAI

生物医药研发领域,一个名为BioMedGPT-1.6B的轻量级科研版基础模型刚刚开源

参数16亿,最大特点是跨模态与知识融合

训练数据中,包含分子、文献、专利、知识库等多尺度跨模态的生物医药大数据,并融合分子结构、知识图谱和文献文本中的知识,用于增强模型的泛化能力和可解释性。

应用任务上,BioMedGPT-1.6B则展现出了通用能“打”的效果,可以处理药物性质预测、自然语言类、跨模态等多种任务。

打造这个BioMedGPT-1.6B生物医药基础模型的团队,来自清华智能产业研究院(AIR)

项目负责人聂再清,清华大学国强教授、AIR首席研究员,主要研究领域是大数据与AI的前沿创新,以及在健康医疗领域的产业应用,更早之前则以阿里达摩院大牛、天猫精灵首席科学家为人熟知。

聂再清

此次开源的BioMedGPT-1.6B,其实是他和团队正在做的BioMedGPT的单机轻量版,后者是一个适用于生物医药领域研发的通用大模型。

1.6B版本先行开源,目的是小试牛刀,同时让行业相关科研人员有东西可用。

所以,这个BioMedGPT究竟是做什么的,团队目前进展如何?在业界已有不少生物医药专业大模型的情况下,做通用大模型的考量是什么,又要如何去做?

聂再清教授向我们解答了背后的思考。

生物医药版GPT,也应具备“涌现”潜力

先来看看BioMedGPT究竟是个什么项目,进展到了哪一阶段。

聂再清教授认为,就像ChatGPT成为了NLP领域的基础大模型一样,BioMedGPT也会成为生物医药领域的基础大模型。

但在这里,“像ChatGPT”并不仅仅意味着BioMedGPT=生物医学大模型+对话能力,而是和ChatGPT一样,会出现智力涌现的情况。

只不过,这里的“智力”,指的是生物医学领域方面知识的理解、规律的发现与灵感的启迪。

这个基础模型的底座能够给药物发现、分子/蛋白质设计等应用提供底层能力,同时能够成为生物医药研究者的助手(Copilot)辅助研究者更高效的开展研究探索。   

所以,能实现这种效果的BioMedGPT,架构上究竟长啥样?

整体来看,它是一个具备多个输入Encoder的模型,这些Encoder会先分别处理不同模态的输入,如分子、蛋白质和文献等。

然后,将这些不同模态的输入,进行统一表示处理,这样就能学习到不同模态之间的关联知识。

这给了模型“融会贯通”的能力,既可以读文献、查专利,又可以读分子序列、蛋白结构、实验数据。

不仅如此,BioMedGPT也是首个将多模态知识引入模型构建的项目,通过知识图谱的方式将生物医药领域的知识注入到模型中,以增强模型的泛化能力和可解释性,同时能够应对科研领域知识的快速更迭,让模型持续学习,变得更“聪明”。

基于这种融会贯通与知识增强的能力,BioMedGPT在下游的多项任务中表现出了整体的效果提升。

目前团队已经完成了实验验证阶段,用一个比较小的端到端模型证明了这种思路的可行性

那么最终能在生物医药方面表现出“智力涌现”的模型,预计在什么规模?

聂再清教授认为,模型参数量级预计在几百亿左右,而训练这一模型达成“涌现”效果的数据量,几十亿到百亿级应该也就够了。

事实上,在ChatGPT出现之前,也就是一年多以前,聂再清和团队就已经在筹备这一项目,目前清华AIR生命科学相关团队规模已经达到50人左右。

对于BioMedGPT的未来,聂再清教授很有信心:

预计两年内,这个模型应该会在小范围内具备一定影响力,至于像ChatGPT那样成为行业通用大模型,做到那样的影响力可能至少还需要3~5年。

但即便如此,BioMedGPT模型究竟能否成功,目前仍旧是一个未知数。

同时对于大模型训练必不可少的算力和数据等方面,也仍然是业界关注的话题。

对于这些观点和想法,聂再清教授又是如何看待的?

“一个理性而大胆的尝试”

大模型的发展和AI技术的更迭组成了ChatGPT为首的一波AI新浪潮。

但早在聂再清教授动念要将生物医药学科知识“塞”进大模型里时,ChatGPT还没打破沉寂。

所以为什么要做?为什么敢做?

时间回到ChatGPT刮大风之前。当时,GPT-2已经可以编故事,下象棋;等到1750亿参数GPT-3出现,已经博得众人瞩目:不仅延续了前代编故事的能力,还能写代码、答问题……

利用大规模文本数据学习语言知识和规律,加上狂叠参数的暴力美学,GPT-3已经在通用领域任务中出现涌现能力,到GPT-3.5,基本的逻辑推理能力突然出现。

在生物和化学领域,生命的本质可以看做一种精密的编码语言,尤其是生命科学领域中微观世界的分子序列数据。

聂再清教授认为,自然语言同样也是一种非常精密的序列,缺一点或少一丝都会让意思变得不一样,因此二者具有类似的特征。

基于此,大模型的底层思想或许有用于生命科学微观数据处理的可能。如果能实现,就能利用生物医药领域的专业知识,帮助完成科研任务。

工作正式开始之前,团队将微观(基因、分子、蛋白质、细胞)与文献知识压缩到一个端到端的模型里,用实验验证了这条思路的可能性——确实在部分药物研发关键下游任务中取得SOTA效果。

于是,做一个适用于生物医药领域研发的基础大模型这事,正式开始了。

此前,无论是单独针对分子、蛋白质还是生物医药领域文献,都有团队单独打造过大模型,但还没有人做一个行业通用的多模态版本。而现在的开源版本BioMedGPT-1.6B,并非一个接近AGI甚至与ChatGPT能力媲美的版本。

“毕竟大家的期待比较高,我们还是要把期待降下来,”聂再清教授解释选择现在向外界告知进度的原因,大方表示目前还达不到理想状态的能力,“实际上,我们最主要还是想把现有工作服务到正在进行相关研究的科研人员。”

但这样的尝试,被聂再清教授称为一种理性而大胆的选择

理性,是因为通过实验,确实发现人类知识经过encoder后,能够产生帮助;大胆,是因为一方面还未完全证明这个工作的商业实用价值,工作还在初步阶段,模型的规模和模态的种类都有待扩大。

但在这个乐观的估计下,工作还是推进了;不仅推进,还快速拿出了轻量级版本。

乐观倒不是因为没由来的盲目,聂再清教授表示,数据、算力和成本上,BioMedGPT暂时都不存在什么担忧:

数据质量上,生物医学领域的论文和专利质量“还是很高的”,不必过于担心训练语料质量不高的情况,并且目前已公开的PubMedQA等数据集,数据量“已经足够”。

同时,团队集合了具有生物医学专业背景的同学,对数据集的构建做了精细专业的设计和专业的标注。

当然,还有一些任务所需的私有数据,BioMedGPT希望通过未来的双通道干湿闭环得到补充。

算力层面,聂再清教授是这样表示的:

目前国内敢跳出来宣布入局大模型的团队,背后肯定已经有足够的算力支撑规划。

数据丰富但公开,算力稀缺但不是无法解决,日后入局者纷至沓来,是不是会在壁垒很薄的情况下形成不必要的行业竞争?

聂再清教授表示了对这个问题的否定,他认为做的人越多,意味着关注度越高,最终的结果就是利好行业内所有的AI制药公司。

最后,我们也朝聂再清教授抛出了那个灵魂问题——

生物医药研发阶段,一切都容不得半点差错,怎么约束大模型的幻觉

聂再清教授说了段绕口令般的话:

我们当然希望,大模型知道“自己知道什么事”,也知道“它知道自己不知道什么事”。但,目前确实也会出现大模型“不知道自己不知道”的情况。

而大模型“不知道自己不知道”,就是我们常见的大模型幻觉——它以为自己知道,其实它不知道。

针对生物医药领域解决的思路,是通过两个闭环来实现对模型的“纠偏”。

干湿实验验证通过湿实验,将模型真实性趋近物理真实世界;专家在环可控的设计,则通过专家instruct,让模型与人类专家认知趋近。 

换言之,通过“做实验”和“跟专家学”两个环路,让AI模型幻觉降低。

聂再清与团队的下一站,就是通过两个闭环,尽可能扩大“大模型知道自己能做啥”的范围,以进一步降低大模型“不知道自己不知道”的比例。

对于此次开源,中国工程院院士、清华大学讲席教授、AIR院长张亚勤院士表示:

将大模型范式应用于生命科学是理性又大胆的探索。

AIR的研究团队以构建生物医药领域大模型为目标,相继研发了多个生物医药专业领域的AI模型,在蛋白质结构预测、抗体设计等领域取得了不错的成果。

此次开源的轻量级科研版基础模型BioMedGPT-1.6B是在生命科学领域的重要进展。

未来,研究团队将继续用BioMedGPT进一步整合领域内多源异构的数据,将知识融入模型构建之中,实现生物世界文本和知识的统一表示学习,带来生物医药领域的“智能涌现”。

开源地址:https://github.com/BioFM/OpenBioMed

— 联系作者 —

《中国AIGC算力产业全景报告》征集启动

AIGC算力需求爆发,谁将在此次算力产业变革中脱颖而出?

量子位《中国AIGC算力产业全景报告》《最值得关注的AIGC算力玩家》正式启动对外征集,期待有更多优秀的机构产品、案例与技术能够被大众看到。


点这里👇关注我,记得标星哦~


一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
武则天初次侍寝李世民,就创下一记录,5000年来至今无人能超越!ChatGPT在生物医药领域的应用前景探索 | 产学研开放麦活动报名中惨!国人大佬主编,医药领域一专业毕业生全军覆没!网友:我二月份刚中啊!小长假远离人群惬意旅行最终目的地就是‘加州小香格里拉’23年实用攻略一定保存收藏ClickPrompt:一站式 Prompt 学习、设计与运行工具(开源),支持 ChatGPT 等5小时之内超百万!华政速度和华政爱心!聂宛荣小师妹,加油!凱特布蘭琪 多層次表演衝擊奧斯卡医药生物行业跟踪周报:抵御市场风险战略性配置血制品,建议关注卫光生物、天坛生物、华兰生物等【东吴医药朱国广团队】2023(第五届)生物样本与转化应用大会暨AI与生物医药研发大会成功开幕!【FBM周报2321】:中国学者发表的论文,占生物医学领域1/4;美国生物公司获得的资金,约是欧洲公司的四倍从BERT到ChatGPT!97页全面综述:那些年一起追过的预训练基础模型7 Papers & Radios | OpenAI用GPT-4解释GPT-2;Meta开源多感官基础模型A Female Comedian Gets Praised and Slut-Shamed for STI Set轻量版ChatGPT训练方法开源!仅用3天围绕LLaMA打造,号称训练速度比OpenAI快15倍北美陶渊明之蚂蚁与野花突然出手!意大利封杀ChatGPT!马斯克也下场呼吁限制ChatGPT!AI发展可能超越人类思维?GPT-4能否为生物医药带来变革?专家:我们不需要略懂皮毛的百科全书,而是真正可信的药物研发工具和合作伙伴医药合作年度盛会,80+医药领袖、700+业内同仁与您共聚杭州,开启药企创新出海新篇章!海王生物接连迎来机构调研,中药领域发展备受关注资本排队进入!合成生物学这把“火”烧到了医药领域!中国首次位居世界第一,但“不是最终目标”一周快讯丨吉安百亿引导基金招GP;温州百亿母基金招GP;烟台百亿生物医药母基金启动运营人手一个ChatGPT!微软DeepSpeed Chat震撼发布,一键RLHF训练千亿级大模型美国的最终目的,是将我们拖入深层冷战首次位居世界第一!专家:不是最终目标中文对话大模型BELLE全面开源!(附:数据+模型+轻量化)ChatGPT“爆火”之后,medGPT要来了!项目路演征集 · 投融资对接 |2023(第五届)生物样本库与转化应用大会暨AI与生物医药研发大会营销5.0:最终目的,是用新科技影响用户叫板ChatGPT?Stability AI 开源语言大模型 StableLM,参数仅为GPT-3百分之四,却能实现超高性能e-grocer :Weee! 公司招人(多专业、多地)金融领域FinBERT、BloombergGPT以及法律领域微调模型LawGPT_zh美国为何宣传中国挺俄了?大型语言模型技术公开课上线4讲!直播讲解ChatGPT开源平替、类GPT4低成本定制以及GPT4Tools2000元训练比肩ChatGPT的开源大模型!GPT-4亲自盖章认证,模型权重均可下载
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。