Redian新闻
>
清华AIR开源轻量版BioMedGPT!聂再清:最终目标是生物医药领域基础大模型

清华AIR开源轻量版BioMedGPT!聂再清:最终目标是生物医药领域基础大模型

科技
衡宇 萧箫 发自 凹非寺
量子位 | 公众号 QbitAI

生物医药研发领域,一个名为BioMedGPT-1.6B的轻量级科研版基础模型刚刚开源

参数16亿,最大特点是跨模态与知识融合

训练数据中,包含分子、文献、专利、知识库等多尺度跨模态的生物医药大数据,并融合分子结构、知识图谱和文献文本中的知识,用于增强模型的泛化能力和可解释性。

应用任务上,BioMedGPT-1.6B则展现出了通用能“打”的效果,可以处理药物性质预测、自然语言类、跨模态等多种任务。

打造这个BioMedGPT-1.6B生物医药基础模型的团队,来自清华智能产业研究院(AIR)

项目负责人聂再清,清华大学国强教授、AIR首席研究员,主要研究领域是大数据与AI的前沿创新,以及在健康医疗领域的产业应用,更早之前则以阿里达摩院大牛、天猫精灵首席科学家为人熟知。

聂再清

此次开源的BioMedGPT-1.6B,其实是他和团队正在做的BioMedGPT的单机轻量版,后者是一个适用于生物医药领域研发的通用大模型。

1.6B版本先行开源,目的是小试牛刀,同时让行业相关科研人员有东西可用。

所以,这个BioMedGPT究竟是做什么的,团队目前进展如何?在业界已有不少生物医药专业大模型的情况下,做通用大模型的考量是什么,又要如何去做?

聂再清教授向我们解答了背后的思考。

生物医药版GPT,也应具备“涌现”潜力

先来看看BioMedGPT究竟是个什么项目,进展到了哪一阶段。

聂再清教授认为,就像ChatGPT成为了NLP领域的基础大模型一样,BioMedGPT也会成为生物医药领域的基础大模型。

但在这里,“像ChatGPT”并不仅仅意味着BioMedGPT=生物医学大模型+对话能力,而是和ChatGPT一样,会出现智力涌现的情况。

只不过,这里的“智力”,指的是生物医学领域方面知识的理解、规律的发现与灵感的启迪。

这个基础模型的底座能够给药物发现、分子/蛋白质设计等应用提供底层能力,同时能够成为生物医药研究者的助手(Copilot)辅助研究者更高效的开展研究探索。   

所以,能实现这种效果的BioMedGPT,架构上究竟长啥样?

整体来看,它是一个具备多个输入Encoder的模型,这些Encoder会先分别处理不同模态的输入,如分子、蛋白质和文献等。

然后,将这些不同模态的输入,进行统一表示处理,这样就能学习到不同模态之间的关联知识。

这给了模型“融会贯通”的能力,既可以读文献、查专利,又可以读分子序列、蛋白结构、实验数据。

不仅如此,BioMedGPT也是首个将多模态知识引入模型构建的项目,通过知识图谱的方式将生物医药领域的知识注入到模型中,以增强模型的泛化能力和可解释性,同时能够应对科研领域知识的快速更迭,让模型持续学习,变得更“聪明”。

基于这种融会贯通与知识增强的能力,BioMedGPT在下游的多项任务中表现出了整体的效果提升。

目前团队已经完成了实验验证阶段,用一个比较小的端到端模型证明了这种思路的可行性

那么最终能在生物医药方面表现出“智力涌现”的模型,预计在什么规模?

聂再清教授认为,模型参数量级预计在几百亿左右,而训练这一模型达成“涌现”效果的数据量,几十亿到百亿级应该也就够了。

事实上,在ChatGPT出现之前,也就是一年多以前,聂再清和团队就已经在筹备这一项目,目前清华AIR生命科学相关团队规模已经达到50人左右。

对于BioMedGPT的未来,聂再清教授很有信心:

预计两年内,这个模型应该会在小范围内具备一定影响力,至于像ChatGPT那样成为行业通用大模型,做到那样的影响力可能至少还需要3~5年。

但即便如此,BioMedGPT模型究竟能否成功,目前仍旧是一个未知数。

同时对于大模型训练必不可少的算力和数据等方面,也仍然是业界关注的话题。

对于这些观点和想法,聂再清教授又是如何看待的?

“一个理性而大胆的尝试”

大模型的发展和AI技术的更迭组成了ChatGPT为首的一波AI新浪潮。

但早在聂再清教授动念要将生物医药学科知识“塞”进大模型里时,ChatGPT还没打破沉寂。

所以为什么要做?为什么敢做?

时间回到ChatGPT刮大风之前。当时,GPT-2已经可以编故事,下象棋;等到1750亿参数GPT-3出现,已经博得众人瞩目:不仅延续了前代编故事的能力,还能写代码、答问题……

利用大规模文本数据学习语言知识和规律,加上狂叠参数的暴力美学,GPT-3已经在通用领域任务中出现涌现能力,到GPT-3.5,基本的逻辑推理能力突然出现。

在生物和化学领域,生命的本质可以看做一种精密的编码语言,尤其是生命科学领域中微观世界的分子序列数据。

聂再清教授认为,自然语言同样也是一种非常精密的序列,缺一点或少一丝都会让意思变得不一样,因此二者具有类似的特征。

基于此,大模型的底层思想或许有用于生命科学微观数据处理的可能。如果能实现,就能利用生物医药领域的专业知识,帮助完成科研任务。

工作正式开始之前,团队将微观(基因、分子、蛋白质、细胞)与文献知识压缩到一个端到端的模型里,用实验验证了这条思路的可能性——确实在部分药物研发关键下游任务中取得SOTA效果。

于是,做一个适用于生物医药领域研发的基础大模型这事,正式开始了。

此前,无论是单独针对分子、蛋白质还是生物医药领域文献,都有团队单独打造过大模型,但还没有人做一个行业通用的多模态版本。而现在的开源版本BioMedGPT-1.6B,并非一个接近AGI甚至与ChatGPT能力媲美的版本。

“毕竟大家的期待比较高,我们还是要把期待降下来,”聂再清教授解释选择现在向外界告知进度的原因,大方表示目前还达不到理想状态的能力,“实际上,我们最主要还是想把现有工作服务到正在进行相关研究的科研人员。”

但这样的尝试,被聂再清教授称为一种理性而大胆的选择

理性,是因为通过实验,确实发现人类知识经过encoder后,能够产生帮助;大胆,是因为一方面还未完全证明这个工作的商业实用价值,工作还在初步阶段,模型的规模和模态的种类都有待扩大。

但在这个乐观的估计下,工作还是推进了;不仅推进,还快速拿出了轻量级版本。

乐观倒不是因为没由来的盲目,聂再清教授表示,数据、算力和成本上,BioMedGPT暂时都不存在什么担忧:

数据质量上,生物医学领域的论文和专利质量“还是很高的”,不必过于担心训练语料质量不高的情况,并且目前已公开的PubMedQA等数据集,数据量“已经足够”。

同时,团队集合了具有生物医学专业背景的同学,对数据集的构建做了精细专业的设计和专业的标注。

当然,还有一些任务所需的私有数据,BioMedGPT希望通过未来的双通道干湿闭环得到补充。

算力层面,聂再清教授是这样表示的:

目前国内敢跳出来宣布入局大模型的团队,背后肯定已经有足够的算力支撑规划。

数据丰富但公开,算力稀缺但不是无法解决,日后入局者纷至沓来,是不是会在壁垒很薄的情况下形成不必要的行业竞争?

聂再清教授表示了对这个问题的否定,他认为做的人越多,意味着关注度越高,最终的结果就是利好行业内所有的AI制药公司。

最后,我们也朝聂再清教授抛出了那个灵魂问题——

生物医药研发阶段,一切都容不得半点差错,怎么约束大模型的幻觉

聂再清教授说了段绕口令般的话:

我们当然希望,大模型知道“自己知道什么事”,也知道“它知道自己不知道什么事”。但,目前确实也会出现大模型“不知道自己不知道”的情况。

而大模型“不知道自己不知道”,就是我们常见的大模型幻觉——它以为自己知道,其实它不知道。

针对生物医药领域解决的思路,是通过两个闭环来实现对模型的“纠偏”。

干湿实验验证通过湿实验,将模型真实性趋近物理真实世界;专家在环可控的设计,则通过专家instruct,让模型与人类专家认知趋近。 

换言之,通过“做实验”和“跟专家学”两个环路,让AI模型幻觉降低。

聂再清与团队的下一站,就是通过两个闭环,尽可能扩大“大模型知道自己能做啥”的范围,以进一步降低大模型“不知道自己不知道”的比例。

对于此次开源,中国工程院院士、清华大学讲席教授、AIR院长张亚勤院士表示:

将大模型范式应用于生命科学是理性又大胆的探索。

AIR的研究团队以构建生物医药领域大模型为目标,相继研发了多个生物医药专业领域的AI模型,在蛋白质结构预测、抗体设计等领域取得了不错的成果。

此次开源的轻量级科研版基础模型BioMedGPT-1.6B是在生命科学领域的重要进展。

未来,研究团队将继续用BioMedGPT进一步整合领域内多源异构的数据,将知识融入模型构建之中,实现生物世界文本和知识的统一表示学习,带来生物医药领域的“智能涌现”。

开源地址:https://github.com/BioFM/OpenBioMed

— 联系作者 —

《中国AIGC算力产业全景报告》征集启动

AIGC算力需求爆发,谁将在此次算力产业变革中脱颖而出?

量子位《中国AIGC算力产业全景报告》《最值得关注的AIGC算力玩家》正式启动对外征集,期待有更多优秀的机构产品、案例与技术能够被大众看到。


点这里👇关注我,记得标星哦~


一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
海王生物接连迎来机构调研,中药领域发展备受关注GPT-4能否为生物医药带来变革?专家:我们不需要略懂皮毛的百科全书,而是真正可信的药物研发工具和合作伙伴ChatGPT“爆火”之后,medGPT要来了!医药合作年度盛会,80+医药领袖、700+业内同仁与您共聚杭州,开启药企创新出海新篇章!营销5.0:最终目的,是用新科技影响用户从BERT到ChatGPT!97页全面综述:那些年一起追过的预训练基础模型叫板ChatGPT?Stability AI 开源语言大模型 StableLM,参数仅为GPT-3百分之四,却能实现超高性能美国为何宣传中国挺俄了?项目路演征集 · 投融资对接 |2023(第五届)生物样本库与转化应用大会暨AI与生物医药研发大会突然出手!意大利封杀ChatGPT!马斯克也下场呼吁限制ChatGPT!AI发展可能超越人类思维?首次位居世界第一!专家:不是最终目标资本排队进入!合成生物学这把“火”烧到了医药领域!小长假远离人群惬意旅行最终目的地就是‘加州小香格里拉’23年实用攻略一定保存收藏A Female Comedian Gets Praised and Slut-Shamed for STI Set医药生物行业跟踪周报:抵御市场风险战略性配置血制品,建议关注卫光生物、天坛生物、华兰生物等【东吴医药朱国广团队】7 Papers & Radios | OpenAI用GPT-4解释GPT-2;Meta开源多感官基础模型北美陶渊明之蚂蚁与野花武则天初次侍寝李世民,就创下一记录,5000年来至今无人能超越!5小时之内超百万!华政速度和华政爱心!聂宛荣小师妹,加油!金融领域FinBERT、BloombergGPT以及法律领域微调模型LawGPT_zh2000元训练比肩ChatGPT的开源大模型!GPT-4亲自盖章认证,模型权重均可下载人手一个ChatGPT!微软DeepSpeed Chat震撼发布,一键RLHF训练千亿级大模型一周快讯丨吉安百亿引导基金招GP;温州百亿母基金招GP;烟台百亿生物医药母基金启动运营ClickPrompt:一站式 Prompt 学习、设计与运行工具(开源),支持 ChatGPT 等大型语言模型技术公开课上线4讲!直播讲解ChatGPT开源平替、类GPT4低成本定制以及GPT4Tools凱特布蘭琪 多層次表演衝擊奧斯卡中国首次位居世界第一,但“不是最终目标”轻量版ChatGPT训练方法开源!仅用3天围绕LLaMA打造,号称训练速度比OpenAI快15倍e-grocer :Weee! 公司招人(多专业、多地)2023(第五届)生物样本与转化应用大会暨AI与生物医药研发大会成功开幕!ChatGPT在生物医药领域的应用前景探索 | 产学研开放麦活动报名中【FBM周报2321】:中国学者发表的论文,占生物医学领域1/4;美国生物公司获得的资金,约是欧洲公司的四倍惨!国人大佬主编,医药领域一专业毕业生全军覆没!网友:我二月份刚中啊!美国的最终目的,是将我们拖入深层冷战中文对话大模型BELLE全面开源!(附:数据+模型+轻量化)
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。