Redian新闻
>
「多模态LLM」最新介绍!数据、论文集直接打包带走

「多模态LLM」最新介绍!数据、论文集直接打包带走

公众号新闻



  新智元报道  

编辑:好困
【新智元导读】全面了解多模态大语言模型,首个跟踪MLLM进展的论文集合发布。


进展跟踪链接(Awesome-MLLM,实时更新):https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models
近年来,大型语言模型Large Language Models(LLM)的研究取得了显著的进展(例如GPT-3,LLaMa,ChatGPT,GPT-4),这些模型在各项自然语言处理(NLP)任务上展现了出色的性能。
通过在海量数据上预训练,LLM获得了丰富的知识以及强大的推理能力。只需要输入一些用户指令,这些模型就可以解析指令、进行推理并给出符合用户预期的回答。
LLM具有的一些典型能力包括:
    · 执行训练时未见过的新任务;
    · 通过少量样例完成新任务;
    · 通过推理链条执行复杂的推理任务;
    · 协调各种模型与工具完成复合任务。
这些能力背后蕴含着众多关键思想和技术,包括指令微调(Instruction Tuning),上下文学习(In-Context Learning)和思维链(Chain of Thought)等。

多模态大型语言模型


尽管大语言模型在NLP领域取得了长足的发展,相应的模型与技术在多模态领域则较少探索,且传统视觉-语言模型仍存在着泛化性不足以及缺乏推理能力等局限。
为此,近期众多学者将注意力转向一个新兴的方向:多模态大型语言模型Multimodal Large Language Models(MLLM)。
其主要思想是以LLM作为「大脑」对输入的多模态信息进行整合、推理、分析和决断,从而完成人类交付的任务。
从发展通用人工智能的视角看,相比于LLM,MLLM又向前迈进了一步,且具有以下优点:
· 更符合人类认知世界的习惯。人类具有多种感官,接受多种模态信息,这些信息常常是互补的、协同作用的。因此,使用多模态信息一般可以更好地认知与完成复杂任务;
· 更加强大与用户友好(User-Friendly)的接口。通过支持多模态输入,用户可以通过更加灵活的方式传达信息;
· 更广泛的任务支持。LLM通常只能完成NLP相关任务,而MLLM通过接入多模态可以完成更多任务。
从系统设计的角度来看,MLLM可以分为两类:
· LLM作为推理器的、支持多模态输入的认知推理系统;
· LLM作为规划器/调度器/决策器的多工具协作系统。
前者一般通过可训练的多模态转换接口将多模态信息转化为LLM可以直接接收、处理的形态,使LLM可以基于这些多模态信息以及用户指令进行认知与推理。
后者通常以LLM作为规划器/调度器/决策器[1],将用户交付的复杂任务分解为更简单的子任务,并派发给合适的模型/工具,最后整合结果并输出。
我们采取另一种视角,聚焦于MLLM背后的关键技术与实现方式,对相关工作进行了调研与总结,将MLLM划分为以下几类:
· 多模态指令微调(Multimodal Instruction Tuning)
· 多模态上下文学习(Multimodal In-Context Learning)
· 多模态思维链(Multimodal Chain-of-Thought)
· LLM辅助的视觉推理(LLM-Aided Visual Reasoning)
下面我们将对这几类工作进行简要介绍。

多模态指令微调(Multimodal Instruction Tuning)

多模态指令微调的基本做法是使用统一的模板将各类数据统一起来,并以指令的形式描述任务需求,形成多模态指令数据,再使用这种数据去微调MLLM。
由于训练与测试时的指令形式具有一致性,LLM可以凭借其强大的语义理解和推理能力,更灵活地泛化到其他任务,获得强大的零样本学习能力。
多模态指令数据的基本形式可以概括为(指令,多模态输入,回答)三元组。
一种直观的获得这种数据的方式是改造基准(Benchmark)数据集,我们以图像描述(Image Captioning)为例,如下图1所示:

图1. 多模态指令数据示例
原本的Caption数据样本包括一张图片和一段文字描述(Ground Truth),这种数据-GT的配对数据自然构成了指令数据的多模态输入和回答部分。
指令部分则为相应任务的描述,一般由人工编写或者调用GPT生成。
在进行多模态指令微调时,MLLM转化多模态输入并送入LLM中,LLM基于多模态信息与指令文本预测答案。

多模态上下文学习(Multimodal In-Context Learning)


多模态上下文学习的核心思想是从类比中学习。比如,我们在学习时一般接触到的形式如下:
通过学习例题,我们在遇到新的问题时,可以通过类比例题学习基本思想与方法,从而解决新的问题。
此外,例题还能规范我们的回答格式,更有利于得到正确的、符合预期要求的答案。
如下图2所示,通过样例让模型预测3x7的计算结果。

图2. 多模态上下文数据示例,通过样例让模型预测3x7的计算结果

多模态思维链(Multimodal Chain-of-Thought)


思维链即一系列中间推理步骤[2]。多模态思维链的基本思想是使模型学会逐步输出中间步骤,最后推理出最终答案,如下图3所示:

图3. 多模态思维链数据示例
相比于直接输出答案的方式,思维链:
· 更符合人类推理习惯:基于之前的推理步骤与结果,逐步导向最终答案;
· 适用于复杂的推理任务,将复杂问题分步求解,提高回答的准确性。

LLM辅助的视觉推理(LLM-Aided Visual Reasoning)

利用LLM作为决策与推理机构,调用各种多模态模型和工具并整合输出,得到最后的答案。根据完成任务的方式一般可分为单轮模型与多轮模型。
单轮模型的基本思想是由LLM作为规划器、调度器和决策器协调各个模型/工具完成任务,一般需要完成以下职能[1]:
· 规划器:将复杂任务分解为可解的子任务;
· 调度器:将子任务派发给合适的模型/工具;
· 决策器:管理子任务执行顺序,整合子任务结果得到最终答案。
多轮模型基于迭代的思想,不断积累视觉认知,直到足够自信得到最终答案。在这个过程中,LLM需要整合之前的步骤 (提出的问题与已获得的视觉认知信息),判断是否可以输出最终答案[3]。
相关论文详见:https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models

参考资料:
[1] Shen, Yongliang, et al. "Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface." arXiv preprint arXiv:2303.17580 (2023).
[2] Wei, Jason, et al. "Chain of thought prompting elicits reasoning in large language models." arXiv preprint arXiv:2201.11903 (2022).
[3] You, Haoxuan, et al. "IdealGPT: Iteratively Decomposing Vision and Language Reasoning via Large Language Models." arXiv preprint arXiv:2305.14985 (2023).



微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
多模态大语言模型综述来啦!一文带你理清多模态关键技术无题不到50元!网红小熊套装亲子装打包带走!这个夏季时尚出街~智源Emu开源!超越DeepMind,刷新8项SOTA,首个「多模态-to-多模态」全能高手腾讯AI Lab发布多模态指令调优语言模型,支持图像、视频等四种不同模态LLM-Pruner: 剪枝+少量数据+少量训练 = 高效的LLM压缩两个周鸿祎继续厮杀「百模大战」,红衣教主:国内LLM弯道超车还得是多模态BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」达摩院猫头鹰mPLUG-Owl亮相:模块化多模态大模型,追赶GPT-4多模态能力LLM底座模型:LLaMA、Palm、GLM、BLOOM、GPT结构对比【第二期】“文献计量分析及SCI论文发表”培训:小班授课、一对一辅导;大咖引领、避坑且高效;科研提升为核心、论文仅为小目标。宾州斯沃斯莫尔学院(Swarthmore College),校园樱花硬核课程全网首发!高级人工智能:多模态大模型LLM与AIGC前沿技术实战从零训练一个多模态LLM:预训练+指令微调+对齐+融合多模态+链接外部系统微软提出CoDi:开创性多模态扩散生成模型,实现4种模态任意输入输出血压高至180 ,继续退圈前装搭载率突破10%!智能座舱「多模态交互」进入整合周期记忆中的南京之十五:重访故地LLM综述全新出炉:51页论文带你盘点LLM领域专业化技术多模态如何自监督?爱丁堡等最新「自监督多模态学习」综述:目标函数、数据对齐和模型架构暑期如何开始合理规划?科研项目、论文发表、商业项目、天文营地、阅读词汇营,通通都来了!小学刚需|学而思1-9年级语数外核心内容,618打包带走赋予LLM视觉理解能力,360人工智能研究院开源中文多模态对话模型SEEChatAIGC拉升设计生产力|赶集直招AI设计实战案例全解析字节团队提出猞猁Lynx模型:多模态LLMs理解认知生成类榜单SoTA更强更通用:智源「悟道3.0」Emu多模态大模型开源,在多模态序列中「补全一切」《绿色的牧歌》&《怎么了》综述|如何利用LLM做多模态任务?中科院发布多模态 ChatGPT,图片、语言、视频都可以 Chat ?中文多模态大模型力作为多模态LLM指明方向,邱锡鹏团队提出具有内生跨模态能力的SpeechGPTCVPR 2023|哈工大南洋理工提出全球首个「多模态DeepFake检测定位」模型:让AIGC伪造无处可藏等了四年的顶级神剧,第一集直接爆了高含金量机器人竞赛详细介绍!(上)美国25个“鬼城”详细介绍!为什么人们要逃离这里?扔下空房子不住?李善友推荐|夯实思考力的宝藏,打包带走!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。