Redian新闻
>
积跬步以至千里 本土GPU企业再创佳绩

积跬步以至千里 本土GPU企业再创佳绩

科技
ChatGPT的火爆引燃了业界对于大模型的应用需求。GPU作为大模型的算力“发动机”,市场需求量暴增,一度供不应求。在国际龙头企业不断发力GPU的同时,国内GPU企业也在加速成长。
6月10日,在第五届智源大会AI系统分论坛上,上海天数智芯半导体有限公司(以下简称“天数智芯”)宣布,天垓100加速卡的算力集群,在北京智源人工智能研究院(以下简称“智源研究院”)70亿参数规模的Aquila语言基础模型上,使用代码数据进行训练,已稳定运行19天,且模型收敛效果符合预期,该项测试证明天数智芯已经具备支持百亿级参数大模型训练的能力。
天数智芯天垓100加速卡
聚焦自主通用GPU 瞄准大模型底层市场
记者获悉,受大模型热潮提振,算力市场需求旺盛,算力服务器呈现持续紧缺状态,配货周期偏长。服务器厂商预计要等待6个月以上才能拿到最新的GPU,且GPU短缺情况至少会持续到明年。
供不应求的市场,也为本土GPU企业提供了展示自我的“舞台”。而虽为后起之秀,但本土GPU企业的实力却不容小觑。
天数智芯副总裁邹翾介绍,天数智芯是中国最早研发GPU的企业之一,从2018年创业至今,实现了很多从0到1的技术突破,并探索出了一条本土通用GPU的创新发展道路。
据了解,天数智芯已经实现通用GPU量产。作为拥有云边协同、训推组合的通用算力系统全方案提供商,天数智芯的系统架构、指令集、核心算子、软件栈均为自主研发。此次完成百亿级大模型训练的天垓100加速卡,是一款全自研、GPU架构的云端训练芯片。
天数智芯大模型训练全栈方案
邹翾介绍,在此次训练中,基于天垓100加速卡的算力集群,在100B Tokens(语料汇总)编程语料、70亿参数量的AquilaCode(“悟道·天鹰”代码模型)大模型参数优化工作中的结果显示,1个Epoch(超参数)后loss值(模型预测结果与真实结果之间的差距)下降到0.8,训练速度达到87K Tokens/s,线性加速比高达95%以上。与国际主流的加速卡集群相比,天垓100加速卡集群的收敛效果、训练速度、线性加速比与其实力相当。在HumanEval基准数据集(一种用于自然语言处理任务评估的数据集)上,以Pass@1(一种代码模式)作为评估指标,自主算力集群训练出来的模型的测试结果,达到了相近参数级别大模型的SOTA(最先进技术)水平,AI编程能力与国际主流GPU产品训练结果相近。
基于天垓100算力集群的AquilaCode大模型训练性能采样
天垓100加速卡率先完成百亿级参数大模型训练,迈出了自主通用GPU大模型应用的重要一步。这一成果证明了天垓产品可以支持大模型训练,打通了国内大模型创新发展的关键“堵点”,推动了我国大模型自主生态建设。
大模型风口已至 GPU面向三大算力需求
数据显示,相较2020年,2022年我国智能算力规模近乎翻倍,达到268 EFLOPS,超过通用算力规模;预计未来5年我国智能算力规模的年复合增长率将达到52.3%。记者获悉,自3月16日百度公布“文心一言”大模型以来,国内已有超过30项大模型产品亮相。
站在大模型的风口上,本土GPU企业要抓住AI大模型兴起的产业机遇,需要从底层定位大模型的算力需求。
邹翾表示,从模型、计算框架层和算子加速等维度出发,算力要满足三大需求。一是通用,可支持模型的快速变形、快速支持新算子、快速支持新通信;二是易用,可利用现有算法模块,对新的重组架构进行调优;三是好用,可重构并行计算、访存全交换、计算全互联等。
“我们希望客户在使用我们的产品时,无须重新评估和设计,可以用现有的硬件设备直接兼容我们的产品,甚至让工程师和专家在使用过程中也可以沿用此前的调试方式,这样可以为客户节省很多成本。”邹翾向《中国电子报》记者说道。
基于此,天垓100加速卡实现了多维度技术创新,具备应用覆盖广、性能可预期、开发易迁移,以及全栈可定制等特点,能够适配主流CPU芯片和服务器厂商,支持国内外主流AI生态和多种深度学习框架,并通过标准化的软硬件生态接口为行业解决产品使用难、开发平台迁移成本高等痛点,缩短适配验证周期。
目前,天垓100加速卡已支撑超过200个不同种类的模型训练,服务于教育、互联网、金融、自动驾驶、医疗及安防等相关行业,支持机器学习、数学运算、加解密及数字信号处理等用例,并实现了对x86、ARM、MIPS等多种CPU架构的适配。
此外,天数智芯还发布了全自研通用GPU推理芯片“智铠100”,以及通用GPU推理产品“智铠50加速卡”和“智铠100加速卡”。同时,天数智芯还打造了高性能异构计算平台——天数智芯软件栈。该平台针对通用计算和深度学习应用的开发和部署提供了一套软件栈工具,支持x86和ARM等架构,集成了多种主流的深度学习编程框架,并且提供了基于C/C++的编程接口拓展和高性能函数库,赋予模型训练及推理更优异的性能表现。该平台还提供了一系列调试和调优工具,可以满足不同层次的应用开发及调试需求,为高性能计算和人工智能应用的开发和部署提供了便利。
基于天数智芯软件栈对主流深度学习编程框架、主流算子及网络模型的支持,开发者可以采用天数智芯通用GPU开发更加简洁且通用的应用,更有效率地实现深度学习以及各类数据科学应用的开发和调试。自此,天数智芯正式成为一家拥有基于GPU架构的云边协同、训推组合的通用算力系统全方案提供商。
提升本土化服务能力 支持大模型创新应用
尽管取得了诸多成就,但作为“追赶者”的本土GPU企业,仍面临着诸多挑战。
邹翾表示,在高性能运算等技术壁垒高的领域中,本土GPU产品和国际主流GPU产品相比,尤其是在旗舰产品层面,仍存在差距。此外,本土GPU企业多为初创企业,品牌塑造需要一定的时间,还需要逐渐培养下游企业对于本土GPU企业的认知。
不积跬步,无以至千里。天数智芯及众多本土GPU企业,正在通过“跬步”持续成长。邹翾认为,所谓的“跬步”,便是在努力追赶国际龙头企业的同时,服务好本土客户。
“对于天数智芯而言,我们并不仅仅追求与国际龙头企业水平相当,而是指将其视为一个过渡的节点,最终目标在于如何服务好本土客户。此外,作为本土GPU企业,不一定在每个赛道上都追求和国际顶尖产品同样的水平,可以先从某一方面入手,再逐渐‘以点带线、以线带面’逐步发展,通过我们的产品性能和服务水平,吸引更多本土客户与我们合作。”邹翾说道。
邹翾介绍,在服务本土客户方面可以主要从三个方面入手,一是为头部大模型企业做算力补充;二是微调,即在模型训练好后再根据领域数据做一次微调优化,以实现算力的推理功能。目前,天数智芯在微调方面,已经可以满足主流需求。
邹翾表示,ChatGPT等AI产品的火爆,不仅带来了短期的巨大算力缺口,也将持续带来并行化的通用计算需求。企业开发大模型的竞争焦点在于挖掘大模型的更多能力,实现这一目标需要算力的堆积,以提升大模型的参数值。此外,随着科学计算、AI建模的不断发展,市场对算力的需求也将显著扩大。
基于此,邹翾表示,天数智芯将继续与合作伙伴深入合作,建设更大规模的天垓100算力集群,完成更大参数规模的大模型训练,未来的参数将达到650亿。此外,天数智芯将打造更多自主通用的GPU产品,更好地支持国内大模型创新应用,进一步夯实我国算力基础,助力人工智能产业建设自主生态。


作者丨沈丛
编辑丨张心怡
美编丨马利亚
监制丨连晓东

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
真正优秀的中国原创佳作,可惜知道的人不多全球第二!清华-INSEAD 双学位EMBA 2023年度QS EMBA合作项目排名再创佳绩!这是在逼着家长拿刀:乱象以至疯狂!DPU与智能网卡技术公开课上新!三位技术大牛主讲开源DPU、内生安全智能网卡与DPU云化裸金属移民生活(1)儿子的技术移民涿州何以至此中国驻美大使谢锋:希望广大在美侨胞再创新佳绩,自立自强做当地发展繁荣的贡献者和受益者摩尔精英助力高校布局“实训云”,在安徽省赛中荣获佳绩,究竟有何「魔力」?有些问题过于荒诞,以至于我们要认真对待基于AI和NPU的Codec变革——VPU与NPU的协同创新友情转发 | 2023改变大会邀请您学以至“变”谁谁谁,急什么急啊洪欣何以至此?老牌港星,婚姻却由第三者说了算……英国本土GCSE夏季考试已进行一周,画风竟和IGCSE大考完全不同?加拿大鹅推出官方二手平台! 三步以旧换新, 薅羊毛天堂~涉黄又涉赌,斗鱼何以至此?熟悉剧情!英国本土GCSE数学考试最后一题又“难”上热搜了!!曾经的石油出口国每况愈下,苏丹局势何以至此?韩国第一的MMO大厂“破防”,曾经无敌的NCsoft何以至此?ChatGPT「联网模式」暂时下线/iPhone 15系列电池容量或获大幅提升/山姆泡面桶被炒至千元,深圳市监局介入调查巴蜀荣耀 || 信息学竞赛再创佳绩——夺全市第一!4人入选省队!“麻醉治疗学”再传佳绩:可治疗银屑病!我喜欢的健康食品 – 魔芋英特尔晶圆厂,何以至此空气巨头ChatGPT大战陷败局,竟因嫌GPU太贵!Meta用CPU跑AI,点错科技树“一个长江”青年行动者支持计划第二期“跬步”奖学金开放申请山河四省,何以至此?“跬步”奖学金,给有志于保护自然的青年马斯克将自研AI芯片:类似GPU,但不是GPU长篇小说连载《此世,此生》第五十章一【房产】“房贷利率如此之高,以至于人们再也买不起房了!”涿州洪水,何以至此震惊!杂志编辑审查投稿的RCT研究数据,发现26%有严重缺陷,以至于结果不可信。又是它!新西兰企业声誉指数发布,这家企业再次登顶!你认同吗?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。