Redian新闻
>
周鸿祎:大模型引领“新工业革命”,这波红利至少五到十年

周鸿祎:大模型引领“新工业革命”,这波红利至少五到十年

财经

6月15日- 6月16日,黑马AIGC产业营1期在北京正式开营。作为创业黑马集团首次专为AIGC产业创业者开办的训练营,“黑马AIGC产业营”整合了黑马多年来积累的产业资源与专业服务能力,聚焦基础概念、商业应用、模式创新、前景趋势、产业融合、数据安全等六大前沿主题,通过产业课程、产业社群、产业游学等不同形式,帮助创业者建立和完善关于AIGC产业协同、数据决策、体验革新三方面的核心认知,并引导中小企业实战升级。

在中国AIGC乃至整个人工智能产业当中,360集团是一个至关重要的存在,其不但居于国内AI实力“第一梯队”,而且是国内最早All In大模型,并向中小企业开放能力的公司之一。6月16日,360集团创始人周鸿祎来到黑马AIGC产业营1期加速现场,以《后GPT时代,大模型发展“以人为本”》为题授课。

周鸿祎表示,人工智能大模型是人类有史以来发明的最伟大的工具,它将成为每个人的助手,解锁我们的很多新能力。他还分享了关于当前整个AIGC产业发展的一些重要观点:“目前百模大战已经进入场景比拼阶段,国产大模型弯道超车的关键是发展多模态,数字人是大模型未来最重要的应用入口,未来的增量市场在企业级应用。”周鸿祎表示。

以下为编辑后的周鸿祎授课内容:

刚才听到有人给我一个新称号——中国AIGC第一人,真的不敢当,远远算不上。真正的大模型时代才刚刚开始,我只不过做了两件事:一是行业里这几年说话的人少了,到底中国为什么要发展大模型,得有人为这个行业发出声音,所以我出来说话多一点。另一方面,我也在学习人工智能,以前我给黑马创业者讲的课是辟邪剑法、葵花宝典,现在我是在练吸星大法。吸星大法的特点就是把别人的思想据为已有,我也希望向黑马创业者学习,像云之声黄伟和智源研究院的专家都来过这里,我也学到了他们的思想。对于大模型,其实现在谁都是只懂一点,听专家讲就像盲人摸象,把他们的观点融汇贯通,就有了自己的观点。

01
大模型是人类最伟大工具

今天时间仓促,其实现在的这个题目我不是很满意。“后GPT时代”的说法并不准确。如果把GPT理解成是ChatGPT,现在正是追赶者、超越者粉墨登场的时代;如果把GPT作为一个通用名词,指生成式通用模型或者大模型,那么这个时代才刚刚开始。

科技要“以人为本”。我也很愿意讨论硅基生物如何战胜碳基生物,但是讨论这个话题,根本不会有答案,只取决于你看的科幻小说有多少。其实人工智能取代人,还是有很长一段距离,不要听了我的讲解,回去就把员工开掉一半。我认为,人工智能的发展是帮助每个人提升工作效率,它是人类有史以来发明的最伟大的工具。

人类统治地球,从来不是靠生理能力,但是人类会发明工具。我们跑得肯定没有豹子快,但是我可以发明汽车;飞得没有老鹰高,但可以发明飞机。只是以往的工具只加强了肉体能力,知识传承一直是碳基生命遗传继承的薄弱环节。如果生一个孩子能把你的才华学识继承了,站在你的肩膀上,就可以取得更大的成就。将来,GPT在这个方面可以帮我们解决问题。所以说大模型是人类有史以来发明的最伟大的工具,把人类历史上的很多知识凝聚在一起,成为每个人的助手,解锁了我们的很多新能力。

02
关于大模型
未来影响的三个认知

对大模型如何认知,可以从三个方面来说。

第一,大模型推动的智能化才是数字化的高峰。我们这代人比较幸运,个人电脑、互联网、智能手机和移动互联网时代,都赶上了,从4G、5G到大数据、云计算、物联网,数字化的高峰就是智能化。当前国家的重要战略就是推动数字化,数字化又可以分成两条线:一是数字产业化,即数字化企业如何发展;还有一个更大的市场是产业数字化或者叫产业互联网,这是很多黑马兄弟的机会。我不一定做互联网,我是传统产业,是制造业的,用牛文文说的重度垂直方法,每个行业都可以用数字化重做一遍,这是巨大的机会,也是未来的蓝海市场。企业上云只是手段,最终的目的是实现智能化,大模型推动的智能化才是数字化的高峰。

第二,大模型代表通用人工智能时代的到来。“AIGC”这个词从一个侧面反应了这个结果,AI可以产生内容,比如文生图、文生视频、文生语音……但它反映的还只是表象,还有一个概念——“通用人工智能”(AGI),更能体现其本质。通用人工智能包含几层意思:首先它和过去的人工弱智不一样。过去的人工智能只能做垂直的事,下围棋的下不了象棋,下象棋的识别不了图片,换一个领域就得换一个模型。但是大语言模型用一套模型算法,解决了很多不同领域的问题。很多人有一个误解,以为大语言模型只是解决自然语言处理的,别的行业用不上,这种观点是错的。其实自然语言处理是人工智能领域皇冠上的明珠,是最难的问题。语言是人类思想的结晶,如果人工智能能理解自然语言,就意味着它能理解这个世界。而且人类的语言可以描绘世界,谁理解了语言,就意味着建立了对这个世界完整知识的图谱。之前,人类做知识图谱很多年都没有做成,因为知识太难表征了,你对一段话中的每一个概念都理解,才能理解整段话。所以通用大语言模型能理解语言,能完整地理解问题,意味着计算机对世界有了基本的认知。

实际上,大模型已经是对于世界最好的理解模型。有了这个能力以后,人工智能就获得了突飞猛进的变化。之前的人工智能软件,比如机器视觉、人脸识别,以及自动驾驶,都是工作在感知层面,而大语言模型工作在大脑层面。有了这种能力以后,在基于对这个世界建立了完整了解的基础上,你再训练人工智能做其他工作,一切都变得简单。过去电脑伪装成人跟你聊天,正常人是聊不下去的,但是今天你问任何一个GPT产品,它都会告诉你,我是AI助手。它有信心,即便我是机器人,也跟你聊得下去,因为你说的每句话我都理解,都能对答如流,这是一个划时代的能力。

第三,大模型将引领新工业革命。大模型是一个什么级别的发明?比尔盖茨说,它不亚于电脑和互联网的发明。黄仁勋说“这是iPhone时刻”,iPhone引领过无线互联网革命。我觉得大模型是工业革命级的科技进步。第一,它的定位很清楚,尽管可以把它当做聊天机器人,但它实际上是一个生产力提升工具。第二,引发工业革命的一定是通用的东西,1946年电子计算机被发明,但是它没有引起工业革命,因为最初的计算机都是专用的,属于政府有关部门、军队、气象部门。只有当PC被发明了,每个家庭、每个人都买得起电脑以后,才引发了革命。iPhone也是,之前的手机是非常有用的通讯工具,但iPhone是一个计算平台,可以实现更多通用功能。

我认为当前的大模型就到了这样的时刻。在大模型之前,尽管大数据很重要,但是没有引起工业革命,因为大数据不能直接用,如果一家公司想要用大数据,需要找人做分析,成本很高。但是大模型不一样,把大数据输进去,练成大模型,可以提供很多通用人工智能的能力,帮你写文案、做规划、做讨论,帮你阅读一些文章。而且大模型的能力不用跟各行各业结合,就已经可以提升各行各业了。

所以,大模型就是新时代的发电厂。有了电以后,才有了又一次工业革命。现在各位无论做什么工作,只要你的企业想升级,要做数字化,一定离不开大模型,这个红利期将至少有五到十年。

最近,OpenAI有两个新动作值得大家注意:一是为ChatGPT加了插件。大模型不是万能的,它善于做知识推理、规划和与人的交互,但也做不了很多事,比如订房、订餐、跟互联网连接,所以OpenAI做了一个插件平台。二是他们又做了函数调用能力,不是程序员的人很容易忽略这件事。实际上它做了函数调用以后,就可以把公司业务系统里的函数暴露出来,大模型就可以跟公司的业务系统对接。比如你跟它聊天,要看一看公司这个月的营收,然后它能调用一个函数,去查公司的数据库,这样大模型跟公司的业务就融合在一起了。

所以,最近大模型的变化日新月异。对于一个新生事物,一定要看它的正向发展,不要被它暂时的缺点迷惑,比如它有时胡说八道,回答问题很可笑等等。这些缺点掩盖不了两件事,第一它在飞快迭代,第二它不是孤立的存在,还可以做中间件,做函数调用,做插件平台。就像你做出了一个发动机,总会有人给它配上轮子、底盘,这些东西凑在一起,就有了汽车。

03
关于大模型发展的四个观点

下面分享我对当前大模型发展的四个新观点。

观点一,百模大战已经进入场景比拼阶段。

现在全世界已经是百模大战了,好像每个公司都能做出大模型。其实做出大模型不难,关键是易学难精。

做一个大模型有几个关键:第一,选择一个基础模型,这件事过去很麻烦,但现在感谢开源环境,代码是现成的,不需要自己写,真正的挑战在于后面的步骤。第二是无监督学习。新一代大模型一个很重要的优点就是无监督学习,过去训练人工智能,所有东西都要标注,但是学习人类知识时会陷入悖论,因为你不可能把所有人类的知识进行标注。大模型则只要是正确的知识,足够多以后,知识和知识可见相互验证、相互联系,就不需要标注。接下来是有监督调优,把几十万,甚至上百万人工标注好的问题和答案对,给到机器,说白了就是刷题。跟人类一样,有些题没见过,它真的不会做;选得好,它会举一反三。然后是价值观对齐,就是让它的回答和人类价值观对齐。机器是由人的训练决定的,曾经有人拿聊天知识库训练聊天机器人,很难用,因为它学习的不是知识,没有逻辑,最近科学家证明,如果拿晦涩的论文、高难度的大学课文、复杂逻辑文章做预训练,训练出来的模型才能更有逻辑性,像现在公众号的文章,为了阅读方便,都是一句话一段,没几句话就是一段图,这种低质量的文章不适合做训练语料。最后是用户训练和反馈。这一步很重要,一定要放到互联网上,有海量的用户来使用。我们自己做测试,测试能力有限,哪怕100道题也是非常片面的测试。只有用户一天问上百万个问题,有的满意,有的不满意。找到错误案例,进行修正,才能进步。

今天做出一个大模型不是很难,难的是用数据去训练大模型,以及有没有场景去使用。现在大模型已经不是核技术了,就像PC出现之后一样,开始技术民主化了,不再像网上说的,ChatGPT训练一次要1000多万美金。但是要想做GPT,大规模、多样性、高质量的训练数据必不可少。360做搜索,每天抓数据,要判断数据质量,因此在数据量上还可以,可以给大家提供预训练的基本数据。

大流量、工程化、高稳定的训练方法也是至关重要,目前大家都在炫耀自己的算力,有多少显卡,但怎么让显卡一起协同工作,这是一个挑战。

尽管OpenAI很了不起,在没有任何场景情况下,构建了通用人工智能。但毕竟大多数公司不是OpenAI,都是凡夫俗子。现在全世界都有共识,世界上不能只有一个大模型。ChatGPT再牛,关于你所在行业问一些深入问题,会发现它比你差远了。黑马之前提过重度垂直的概念,这在大模型领域依然适用。

我们做大模型时,一定要紧扣场景。现在大模型展示的能力从办公来看是够用的,但是一定要能跟中小企业做深度结合。举个例子,很多人在小红书和抖音上做不同的文案,我让它专门写抖音文案,就是一个微观场景。用它的能力结合实际场景,才是用户真正需要的东西。多场景有效落地,可以让大模型真正服务用户。

观点二,国产大模型弯道超车的关键是发展多模态。

现在国产大模型追赶ChatGPT的脚步,比我预想的要快。这还要感谢整个行业半年来公开的技术、培训的方法,以及训练的数据库、数据集越来越多,甚至很多新做的大模型,是以GPT-4作为老师,用GPT-4产生的很多问题和答案来训练。

我认为大模型未来一个重要的发展方向是多模态。看看ChatGPT的发展,GPT-1到2是参数的变化,3是进入千亿模型,实现涌现,GPT-3.5是让它有了问答和对话能力,GPT-4除了能力比3.5强很多以外,也展示了多模态的能力,就是图生文、文生图,相对比较简单,GPT-5最大的可能性就是多模态,会更加理解这个世界。

多模态包括必不可少的四大关键能力:第一,文字处理能力;第二,图像处理能力;第三,语音处理能力;第四,视频处理能力。

我们今天彼此交流,就是彼此训练的过程。你们听我讲,就是我给你们输入,你们在训练。曾经有人质疑,人类目前总共就出版过几亿本书,据说有一半的书都训练给GPT了,马上就无法训练了。其实只要把满大街的摄像头接入GPT,我们在哪说话,在哪开会,说什么,它能听懂、看懂,这将会是一个更高级的训练,对于增加它对这个世界的理解,将会是非常强大的。

传统的视觉识别,只能认出图上有什么,但理解不了这张图的情感、氛围、逻辑和背后的故事。现在的大模型识别,各家的引擎差不多,真正要画一张符合特定需求的好图,至少需要几十个、上百个Prompt,所以将来垂直的小模型有巨大的机会,而不一定是什么都能干的通用大模型。

观点三,数字人是大模型未来最重要的应用入口。

其实,并不是每个人都要从零开始做一个大模型。我们想用大模型解决问题,最大的机会在于,怎么让大模型更好用,而不是每个人都成为提示词专家。这就需要定义一种新的角色,叫数字人,作为大模型的应用入口。

上一次黑马AIGC产业大会我嗓子出问题了,没有来,就派了一个数字人,但它还是传统的数字人,没有性格和记忆,跟人无法互动。我们希望打造有灵魂的数字人,甚至能复刻某些名人的人生经历,希望有人设、有经历,这里面的机会很大。

现在有很多开源方法在探讨。有一个方案是,既然大模型没有记忆,没有目标,不回答你的问题时它在沉睡,我可以做一个外部程序,可以把大模型驱动起来,对话完以后进行保存,使它有记忆;或者把一个任务分解成多个目标,用不同的模型来完成。

360推出了AI广场,可以做出分类角色。

这种角色可以是娱乐化的,比如我做了一个数字人叫曹操,我经常问他,为什么放关羽走,为什么杀掉吕布。还可以做成数字名人,比如孙悟空、林黛玉等等。

今天大模型跟你的耦合,就是一个聊天机器人,可以解决办公和知识管理的问题。如果跟企业的业务相融合,就需要一些新模式了,可以借助大模型,打造一个数字人。

比如“数字员工”,把大模型定义成不同领域的专家,游戏的产品经理、社交媒体的运营、小红书的运营专家等,把它定义得越细越好。我们人类不愿意跟人打交道,把它包装成各种数字人以后,人跟“人”的交流,使用起来会更加通畅。过去只有老板有助理,以后普通员工想要几个助理就有几个助理。

甚至可能实现数据永生。想象一下,今天给一个人身上挂一个行车记录仪,他写了什么微博,发了什么朋友圈,讲了什么话,攒一年到两年的数据,训练一个大模型出来。我们跟这个G大模型聊天,它可以学到一个人的思维模式,而不是只是模仿原话,就可以实现一定程度的数字永生,也是一种知识的传承。

观点四,大模型未来的增量市场在企业级应用。

尽管我们可以用大模型做出各种娱乐应用,但娱乐应用的场景,已经被互联网巨头割据了,我不认为有创业公司的机会。按照我前面的观点,既然是工业革命级,一定是企业和行业的生产力倍增工具,所以,我认为大模型未来的增量市场是在企业级应用。

其中一个机会在中小微企业。因为中小微企业即使买了一个GPT账号,也一定不会用。可能全公司只有一小部分人会用,大部分人还不会用。学Prompt的难度就像学编程一样,你不知道说哪句话,数字人就开窍了,回答得特别好,你把某个词改一下,他就像白痴一样乱说。所以中小企业比较大的机会,是在大模型API基础上,定制完成具体工作的数字员工。

第二个机会是行业垂直大模型。像黑马做的科创大模型就是其中的一个。

第三个机会,给企业和城市部署私有化大模型。如果你的企业规模很小,通过上传建立自己知识库的方式,建立自己的私有客服机器人,这是可以的。但作为中大型企业,用大模型首先存在数据泄露的风险,其次是公有大模型缺乏深度行业知识。所以,做一个对你所在行业和企业更了解的大模型,这是目前最大的机会。这些公司都是行业翘楚,有深刻的Know how和内涵,行业的知识未必被掌握在大模型手里,也未必在公网上可以抓到。

此外,使用公有大模型无法支持知识及时更新,大模型隔一段时间才能训练一次,目前做不到实时训练,这也是一个挑战。

而且,公有大模型无法实现组织内部权限的分级管理,这又是一个挑战。

所以,大模型既有巨大的需求,也有一系列挑战。这些挑战,就是未来的机会。

大模型有一个优点,目前的训练成本极大降低。每个企业最大的资产,就是企业内部的知识和Know how,这是不能外传的,但是做成大模型,就能解决企业内部知识的传承问题。找到一个大模型,由360做了基本训练以后,企业进行行业数据和企业数据的训练,这样就能训练出一个专有大模型。

专有大模型怎么用呢?我认为至少可以先做四件事:第一是员工知识助手,第二是员工的办公助手,第三是领导的决策助手,第四是企业的智能客服。

我们经常听人说,哪个行业领域的“水”很深,说明这个领域都有大量深奥的行业内部知识,这也恰恰是私有大模型巨大的机会。


扫码加入黑马创业者交流群
↓↓↓

扫描下方二维码
加入黑马AIGC产业营
读懂AIGC底层逻辑,一步接入产业未来
↓↓↓

点击底部分享、赞和在看,完成三连击,把好的内容传递给更多需要的人。


更多精彩内容,尽在i黑马视频号

↓↓↓

关注黑马传播矩阵,get更多精彩内容
↓↓

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
中美俄实验室同日复现常温超导材料!网友齐刷见证历史,第四次工业革命来了?周鸿祎:中小企业能不能做大模型?这世界充满缝隙周鸿祎:创业者要“不装不端有点二”周鸿祎:我看到很多投资人急了,但大模型真正的机会就在中国,在企业级市场人工智能引领体育产业革命,AI会抢走专业教练员的“饭碗”吗?周鸿祎:我非常感谢所有的孤独周鸿祎:现在说超越ChatGPT的叫吹牛音乐成热门ETF主题,普通人怎么吃到这波红利?宾大访校记Pinecone:大模型引发爆发增长的向量数据库,AI Agent的海马体金壮龙视频出席全球发展倡议新工业革命伙伴关系研讨会号称“推动制造业革命”的3D打印,如何给与IGCSE学生更多专业选择机会?AI引领第四次工业革命的巨浪,12点关键结论洞察未来构建新AirPods Pro或采用USB-C接口/特斯拉第二季度交付超预期/周鸿祎:别想用一个大模型解决所有问题周鸿祎:大模型像“发电厂”,把数据变成数据链,输送给百行千业去火星的船晚点,马斯科还在地球上小米辟谣武汉总部35岁以上员工只保留10%;周鸿祎:不会用GPT的人未来会被淘汰;特斯拉2023年度股东大会下周召开 | 邦早报新Mac Pro跑分出炉/小米48亿或被印度没收/周鸿祎:国内大模型接近国际水平大数据在大模型趋势下的“新姿态”:大模型与企业数据充分协同周鸿祎:别怕产品有缺点,就怕产品没亮点360 周鸿祎:大模型不是「原子弹」,而是「AK47」丁辰灵:瓦格纳解救中国非洲矿工,中俄联手第四次工业革命为了冰淇淋,这里发动了“工业革命”周鸿祎:人生来就要有理想,就可以狂妄360正式发布自研大模型,周鸿祎:国产大模型追赶GPT4的速度远超想象塞尔达工业革命卷到数字电路了!网友:怕不是要在Switch里造Switch早财经丨武汉总部裁九成35岁以上员工?小米辟谣;“挖呀挖”黄老师关闭打赏;周鸿祎:不会用GPT将被淘汰对话360集团CEO创始人周鸿祎:做大语言模型比做光刻机简单多了80亿估值独角兽突然倒闭:2000万用户95%是机器人;周鸿祎:不要试图用一个大模型解决所有问题;美国家地理回应裁员停刊|邦早报周鸿祎:颠覆就是马后炮的总结复旦大学 MOSS 大模型正式开源;周鸿祎:360 员工不会被 GPT 淘汰;Google 重组 AI 研究部门|极客早知道西伯利亚万里长征:捷克军团在俄国 [转贴]中国东西部共同谋划“第四次工业革命”大厂裁员XYZ
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。