把LangChain跑起来的3个方法
来源 | OSCHINA 社区
作者 | 京东云开发者
原文链接:https://my.oschina.net/u/4090830/blog/10086279
基础功能
支持多种模型接口,比如 OpenAI、HuggingFace、AzureOpenAI …
Fake LLM,用于测试
缓存的支持,比如 in-mem(内存)、SQLite、Redis、SQL
用量记录
支持流模式(就是一个字一个字的返回,类似打字效果)
文档分割器
向量化
对接向量存储与搜索,比如 Chroma、Pinecone、Qdrand
LLMChain
各种工具 Chain
LangChainHub
https://www.langchain.cn/t/topic/35
测试 Langchain 工程的 3 个方法:
import os
from decouple import config
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import load_tools
这里 mock 下 ChatGPT, 使用 mockLLm
#from langchain.llms import OpenAI
from langchain.llms.fake import FakeListLLM
os.environ["OPENAI_API_KEY"] = config('OPENAI_API_KEY')
REPL 是 “Read–Eval–Print Loop”(读取 - 求值 - 打印 - 循环)的缩写,它是一种简单的、交互式的编程环境。
在 REPL 环境中,用户可以输入一条或多条编程语句,系统会立即执行这些语句并输出结果。这种方式非常适合进行快速的代码试验和调试。
tools = load_tools(["python_repl"])
responses=[
"Action: Python REPL\nAction Input: chatGpt原理",
"Final Answer: mock答案"
]
llm = FakeListLLM(responses=responses)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("chatGpt原理2")
from langchain.llms.human import HumanInputLLM
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from wikipedia import set_lang
使用维基百科工具
tools = load_tools(["wikipedia"])
这里必须要设置为中文 url 前缀,不然访问不了
set_lang("zh")
初始化 LLM
llm = HumanInputLLM(prompt_func=lambda prompt: print(f"\n===PROMPT====\n{prompt}\n=====END OF PROMPT======"))
初始化 agent
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("喜羊羊")
from langchain.document_loaders import UnstructuredFileLoader
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import HuggingFaceHub
import os
from decouple import config
from langchain.agents import load_tools
这里 mock 下 ChatGPT, 使用 HUGGINGFACEHUB
os.environ["HUGGINGFACEHUB_API_TOKEN"] = config('HUGGINGFACEHUB_API_TOKEN')
导入文本
loader = UnstructuredFileLoader("docment_store\helloLangChain.txt")
将文本转成 Document 对象
document = loader.load()
print(f'documents:{len(document)}')
初始化文本分割器
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 500,
chunk_overlap = 0
)
切分文本
split_documents = text_splitter.split_documents(document)
print(f'documents:{len(split_documents)}')
加载 LLM 模型
overal_temperature = 0.1
flan_t5xxl = HuggingFaceHub(repo_id="google/flan-t5-xxl",
model_kwargs={"temperature":overal_temperature,
"max_new_tokens":200}
)
llm = flan_t5xxl
tools = load_tools(["llm-math"], llm=llm)
创建总结链
chain = load_summarize_chain(llm, chain_type="refine", verbose=True)
执行总结链
chain.run(split_documents)
Leader 所有的数据,本次日志对齐即完成。
END
点这里 ↓↓↓ 记得 关注✔ 标星⭐ 哦
微信扫码关注该文公众号作者
戳这里提交新闻线索和高质量文章给我们。
来源: qq
点击查看作者最近其他文章