Redian新闻
>
Npj Comput. Mater.: 解析原子分辨图像数据—贝叶斯深度学习

Npj Comput. Mater.: 解析原子分辨图像数据—贝叶斯深度学习

科学

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

宏观对称性是现代凝聚态物理和材料科学的核心概念之一。与无序系统相比,基于对称性的描述符让人们对具有平移对称性材料的结构和功能有了更深入的了解。至21世纪以来,高分辨率电子和扫描探针显微镜成像的出现,为获取体材料、二维材料和表面的原子分辨率图像打开了闸门。这些图像中的海量数据包含了与材料结构、结构变形和物理功能相关的信息。掌握这些信息,需要开发用于提取相关信息的数学框架。然而,迄今针对原子分辨图像的分析,通常都是基于对宏观物理学概念的运用,如平移、点群对称性、对称性降低等。在这一点上,显微测量的本质是根本不同的。


来自美国橡树岭国家实验室纳米材料科学中心的Sergei V. Kalinin(本刊副主编)研究团队,提出了一种基于贝叶斯的深度学习方法来分析空间解析数据。该方法利用了三个基本概念的协同作用,即对应于稳定原子构型的原子级描述符的简约,理想化描述符中存在的扭曲,和可能存在的离散或连续性旋转对称。这三个概论在一个工作流中实现,结合了特征选择(原子查找),一个旋转不变变分自动编码器,以及一个条件自动编码器。该方法适用于2D图像数据,但也可以推广到更复杂的多维数据集。作者提出的工作流程,不仅能对原子分辨 STEM 成像数据进行自下而上的对称性和结构分析,还为研究材料系统中的对称破坏畸变开辟了道路。

该文近期发表于npj Computational Materials 7, 181 (2021)英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
 


Deep Bayesian local crystallography

Sergei V. Kalinin, Mark P. Oxley, Mani Valleti, Junjie Zhang, Raphael P. Hermann, Hong Zheng, Wenrui Zhang, Gyula Eres, Rama K. Vasudevan & Maxim Ziatdinov 

The advent of high-resolution electron and scanning probe microscopy imaging has opened the floodgates for acquiring atomically resolved images of bulk materials, 2D materials, and surfaces. This plethora of data contains an immense volume of information on materials structures, structural distortions, and physical functionalities. Harnessing this knowledge regarding local physical phenomena necessitates the development of the mathematical frameworks for extraction of relevant information. However, the analysis of atomically resolved images is often based on the adaptation of concepts from macroscopic physics, notably translational and point group symmetries and symmetry lowering phenomena. Here, we explore the bottom-up definition of structural units and symmetry in atomically resolved data using a Bayesian framework. We demonstrate the need for a Bayesian definition of symmetry using a simple toy model and demonstrate how this definition can be extended to the experimental data using deep learning networks in a Bayesian setting, namely rotationally invariant variational autoencoders.

扩展阅读

 
npj: 自动化实验设计—新型贝叶斯优化
npj: 有物理头脑的贝叶斯网络—太阳能电池工艺的创新优化
npj:高光谱扫描探针显微成像—高斯过程建模
npj: 扫描探针显微镜插上机器学习的翅膀——材料探幽更为便捷
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Npj Comput. Mater.: 电子与晶格共舞—纳米尺度激发态动力学邓力:转动语音深度学习飞轮的人 | 深度学习崛起十年Funplus杨超:Funplus如何打造次世代服务器框架?对方辩手,这是我方最新论据——003型福建舰陆晨:从 2022 年高考数学中的贝叶斯推理题谈起 | 深度观点Npj Comput. Mater.: 非晶材料中热输运—同济大学陈杰教授疑惑到底靠粒子还是波?Npj Comput. Mater.: 什么样的二维铁磁材料能在更高温度下依然保持铁磁性?发布 | 2022年中国深度学习年会宣传片自然语言处理 · 机器学习 · 深度学习Hurun China Metaverse Companies with the Greatest Potential 2022Npj Comput. Mater.: 二维范德瓦尔斯雅努斯磁性材料——神通广大?精选SDE岗位 | Qualcomm、STERIS、Teradyne等公司最新职位发布!npj Computational Materials: 胡建军打造新材料发现的百宝工具箱:MaterialAtlas.org十八岁己成美国近期枪击案主角Gary Marcus公开喊话Hinton、马斯克:深度学习就是撞墙了,我赌十万美金西雅图周末不无聊|带着你心爱的人,一起去Tacoma Water Lantern Festival放水灯叭!在南法的日子(8)----地中海海滩在火柴燃尽之后澳洲流感病例激增,或将进入流感爆发季!专家分析原因,提醒居民做好准备!Fatal Car Crash Sparks Safety Concerns Over Autonomous Driving猝死能救吗?NT-proBNP是不是BNP……盘点那些常被混淆的定义!Npj Comput. Mater.: 拓扑图形序参量生成扩散模型漫谈:DDPM = 贝叶斯 + 去噪Chinese Experts Refute ‘Wrong’ Claims on Domestic COVID VaccinesChina’s Community Health Centers Are Losing Public Appeal许东的「AI生命科学」进化史:从90年代泡沫繁荣,到深度学习复兴Chinese Cities Cautiously Welcome Travelers From Shanghai西红柿的吃法荟萃三十年,兜兜转转又回到了原点深度学习三巨头邀你来参会!赢取RTX 3090!NVIDIA GTC 2022 AI 大会来了!npj Comput. Mater.: 分子动力学兼得“鱼与熊掌”—高精度、高速度!npj Computational Materials: 华人教授曹晔提升金属氧化物忆阻器—导电细丝的形成与优化Recovering the Forgotten History of China’s ConstitutionShanghai’s Musical Theater Scene Sputters Back to LifeNpj Comput. Mater.: 衬底选择对可控制备二维材料具有关键作用
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。