Redian新闻
>
ES 不香吗,为啥被大厂摒弃而迁移到ClickHouse?

ES 不香吗,为啥被大厂摒弃而迁移到ClickHouse?

公众号新闻

Elasticsearch 是一个实时的分布式搜索分析引擎,它的底层是构建在 Lucene 之上的。简单来说是通过扩展 Lucene 的搜索能力,使其具有分布式的功能。ES通常会和其它两个开源组件 logstash(日志采集)和Kibana(仪表盘)一起提供端到端的日志/搜索分析的功能,常常被简称为ELK。
Clickhouse是俄罗斯搜索巨头Yandex开发的面向列式存储的关系型数据库。ClickHouse是过去两年中OLAP领域中最热门的,并于2016年开源。
ES是最为流行的大数据日志和搜索解决方案,但是近几年来,它的江湖地位受到了一些挑战,许多公司已经开始把自己的日志解决方案从ES迁移到了Clickhouse,这里就包括:携程,快手等公司。

架构和设计的对比

ES的底层是Lucenc,主要是要解决搜索的问题。搜索是大数据领域要解决的一个常见的问题,就是在海量的数据量要如何按照条件找到需要的数据。搜索的核心技术是倒排索引和布隆过滤器。ES通过分布式技术,利用分片与副本机制,直接解决了集群下搜索性能与高可用的问题。

ElasticSearch是为分布式设计的,有很好的扩展性,在一个典型的分布式配置中,每一个节点(node)可以配制成不同的角色,如下图所示:
  • Client Node,负责API和数据的访问的节点,不存储/处理数据
  • Data Node,负责数据的存储和索引
  • Master Node, 管理节点,负责Cluster中的节点的协调,不存储数据。

ClickHouse 是基于MPP架构的分布式 ROLAP(关系OLAP)分析引擎。每个节点都有同等的责任,并负责部分数据处理(不共享任何内容)。ClickHouse 是一个真正的列式数据库管理系统(DBMS)。在 ClickHouse 中,数据始终是按列存储的,包括矢量(向量或列块)执行的过程。让查询变得更快,最简单且有效的方法是减少数据扫描范围和数据传输时的大小,而列式存储和数据压缩就可以帮助实现上述两点。Clickhouse同时使用了日志合并树,稀疏索引和CPU功能(如SIMD单指令多数据)充分发挥了硬件优势,可实现高效的计算。Clickhouse 使用Zookeeper进行分布式节点之间的协调。

为了支持搜索,Clickhouse同样支持布隆过滤器。

查询对比实战

为了对比ES和Clickhouse的基本查询能力的差异,我写了一些代码(https://github.com/gangtao/esvsch)来验证。
这个测试的架构如下:

架构主要有四个部分组成:

  • ES stack ES stack有一个单节点的Elastic的容器和一个Kibana容器组成,Elastic是被测目标之一,Kibana作为验证和辅助工具。

    部署代码如下:
version: '3.7'
services: elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:7.4.0 container_name: elasticsearch environment: - xpack.security.enabled=false - discovery.type=single-node ulimits: memlock: soft: -1 hard: -1 nofile: soft: 65536 hard: 65536 cap_add: - IPC_LOCK volumes: - elasticsearch-data:/usr/share/elasticsearch/data ports: - 9200:9200 - 9300:9300 deploy: resources: limits: cpus: '4' memory: 4096M reservations: memory: 4096M
kibana: container_name: kibana image: docker.elastic.co/kibana/kibana:7.4.0 environment: - ELASTICSEARCH_HOSTS=http://elasticsearch:9200 ports: - 5601:5601 depends_on: - elasticsearch
volumes: elasticsearch-data: driver: local
  • Clickhouse stack Clickhouse stack有一个单节点的Clickhouse服务容器和一个TabixUI作为Clickhouse的客户端。

    部署代码如下:
version: "3.7"
services: clickhouse: container_name: clickhouse image: yandex/clickhouse-server volumes: - ./data/config:/var/lib/clickhouse ports: - "8123:8123" - "9000:9000" - "9009:9009" - "9004:9004" ulimits: nproc: 65535 nofile: soft: 262144 hard: 262144 healthcheck: test: ["CMD", "wget", "--spider", "-q", "localhost:8123/ping"] interval: 30s timeout: 5s retries: 3 deploy: resources: limits: cpus: '4' memory: 4096M reservations: memory: 4096M
tabixui: container_name: tabixui image: spoonest/clickhouse-tabix-web-client environment: - CH_NAME=dev - CH_HOST=127.0.0.1:8123 - CH_LOGIN=default ports: - "18080:80" depends_on: - clickhouse deploy: resources: limits: cpus: '0.1' memory: 128M reservations: memory: 128M
  • 数据导入 stack 数据导入部分使用了Vector.dev开发的vector,该工具和fluentd类似,都可以实现数据管道式的灵活的数据导入。

  • 测试控制 stack 测试控制我使用了Jupyter,使用了ES和Clickhouse的Python SDK来进行查询的测试。

用 Docker compose 启动 ES 和 Clickhouse 的 stack 后,我们需要导入数据,我们利用 Vector 的 generator 功能,生成 syslog,并同时导入ES和Clickhouse,在这之前,我们需要在Clickhouse上创建表。ES的索引没有固定模式,所以不需要事先创建索引。
创建表的代码如下:
CREATE TABLE default.syslog(    application String,    hostname String,    message String,    mid String,    pid String,    priority Int16,    raw String,    timestamp DateTime('UTC'),    version Int16) ENGINE = MergeTree()    PARTITION BY toYYYYMMDD(timestamp)    ORDER BY timestamp    TTL timestamp + toIntervalMonth(1);
创建好表之后,我们就可以启动vector,向两个stack写入数据了。vector的数据流水线的定义如下:
[sources.in]  type = "generator"  format = "syslog"  interval = 0.01  count = 100000
[transforms.clone_message] type = "add_fields" inputs = ["in"] fields.raw = "{{ message }}"
[transforms.parser] # General type = "regex_parser" inputs = ["clone_message"] field = "message" # optional, default patterns = ['^<(?P<priority>\d*)>(?P<version>\d) (?P<timestamp>\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{3}Z) (?P<hostname>\w+\.\w+) (?P<application>\w+) (?P<pid>\d+) (?P<mid>ID\d+) - (?P<message>.*)$']
[transforms.coercer] type = "coercer" inputs = ["parser"] types.timestamp = "timestamp" types.version = "int" types.priority = "int"
[sinks.out_console] # General type = "console" inputs = ["coercer"] target = "stdout"
# Encoding encoding.codec = "json"
[sinks.out_clickhouse] host = "http://host.docker.internal:8123" inputs = ["coercer"] table = "syslog" type = "clickhouse"
encoding.only_fields = ["application", "hostname", "message", "mid", "pid", "priority", "raw", "timestamp", "version"] encoding.timestamp_format = "unix"
[sinks.out_es] # General type = "elasticsearch" inputs = ["coercer"] compression = "none" endpoint = "http://host.docker.internal:9200" index = "syslog-%F"
# Encoding
# Healthcheck healthcheck.enabled = true

这里简单介绍一下这个流水线:

  • http://source.in 生成syslog的模拟数据,生成10w条,生成间隔和0.01秒
  • transforms.clone_message 把原始消息复制一份,这样抽取的信息同时可以保留原始消息
  • transforms.parser 使用正则表达式,按照syslog的定义,抽取出application,hostname,message ,mid ,pid ,priority ,timestamp ,version 这几个字段
  • transforms.coercer 数据类型转化
  • sinks.out_console 把生成的数据打印到控制台,供开发调试
  • sinks.out_clickhouse 把生成的数据发送到Clickhouse
  • sinks.out_es 把生成的数据发送到ES

运行Docker命令,执行该流水线:

docker run \  -v $(mkfile_path)/vector.toml:/etc/vector/vector.toml:ro \  -p 18383:8383 \  timberio/vector:nightly-alpine
数据导入后,我们针对一下的查询来做一个对比。ES使用自己的查询语言来进行查询,Clickhouse支持SQL,我简单测试了一些常见的查询,并对它们的功能和性能做一些比较。
  • 返回所有的记录

# ES{  "query":{    "match_all":{}  }}
# Clickhouse"SELECT * FROM syslog"
  • 匹配单个字段

# ES{  "query":{    "match":{      "hostname":"for.org"    }  }}
# Clickhouse"SELECT * FROM syslog WHERE hostname='for.org'"
  • 匹配多个字段

# ES{  "query":{    "multi_match":{      "query":"up.com ahmadajmi",        "fields":[          "hostname",          "application"        ]    }  }}
# Clickhouse、"SELECT * FROM syslog WHERE hostname='for.org' OR application='ahmadajmi'"

单词查找,查找包含特定单词的字段

# ES{  "query":{    "term":{      "message":"pretty"    }  }}
# Clickhouse"SELECT * FROM syslog WHERE lowerUTF8(raw) LIKE '%pretty%'"
  • 范围查询, 查找版本大于2的记录

# ES{  "query":{    "range":{      "version":{        "gte":2      }    }  }}
# Clickhouse"SELECT * FROM syslog WHERE version >= 2"
  • 查找到存在某字段的记录

ES是文档类型的数据库,每一个文档的模式不固定,所以会存在某字段不存在的情况;而Clickhouse对应为字段为空值
# ES{  "query":{    "exists":{      "field":"application"    }  }}
# Clickhouse"SELECT * FROM syslog WHERE application is not NULL"
  • 正则表达式查询,查询匹配某个正则表达式的数据

# ES{  "query":{    "regexp":{      "hostname":{        "value":"up.*",          "flags":"ALL",            "max_determinized_states":10000,              "rewrite":"constant_score"      }    }  }}
# Clickhouse"SELECT * FROM syslog WHERE match(hostname, 'up.*')"

聚合计数,统计某个字段出现的次数

# ES{  "aggs":{    "version_count":{      "value_count":{        "field":"version"      }    }  }}
# Clickhouse"SELECT count(version) FROM syslog"
  • 聚合不重复的值,查找所有不重复的字段的个数

# ES{  "aggs":{    "my-agg-name":{      "cardinality":{        "field":"priority"      }    }  }}
# Clickhouse"SELECT count(distinct(priority)) FROM syslog "

我用 Python 的 SDK,对上述的查询在两个Stack上各跑10次,然后统计查询的性能结果。

我们画出出所有的查询的响应时间的分布:

总查询时间的对比如下:

通过测试数据我们可以看出 Clickhouse 在大部分的查询的性能上都明显要优于 Elastic。在正则查询(Regex query)和单词查询(Term query)等搜索常见的场景下,也并不逊色。

在聚合场景下,Clickhouse 表现异常优秀,充分发挥了列村引擎的优势。
注意,我的测试并没有任何优化,对于 Clickhouse 也没有打开布隆过滤器。可见 Clickhouse 确实是一款非常优秀的数据库,可以用于某些搜索的场景。当然ES还支持非常丰富的查询功能,这里只有一些非常基本的查询,有些查询可能存在无法用SQL表达的情况。

总结

本文通过对于一些基本查询的测试,对比了 Clickhouse 和 Elasticsearch 的功能和性能,测试结果表明,Clickhouse在这些基本场景表现非常优秀,性能优于ES,这也解释了为什么用很多的公司应从 ES 切换到 Clickhouse 之上。

链接:https://zhuanlan.zhihu.com/p/353296392

(版权归原作者所有,侵删)

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
从Snowflake迁移到Databricks,成本下降50%?Snowflake被迫解释蚂蚁为啥被罚70亿?差点制造中国次贷On Douyin, Chinese Companies Sell Coal at Rock-Bottom PricesClickHouse,自掘坟墓!!??比 Spark 快 9 倍,超越 ClickHouse,在大语言模型时代构建全新数据平台ICCV 2023 | 将MAE预训练好的Encoder-Decoder整体迁移到目标检测中生活在花海中诺曼底那块白色的墓碑爆锤全球外资的印度,为啥被西红柿打败了?你好,我是筚(bì)篥( lì)!旧金山地标Cliff House悬崖小屋,宣布明年年底餐厅重新开业凡尔赛宫背后有故事全职太太为救重病孩子起诉富豪丈夫,为啥被驳回?大胆发言:年轻人坐电动轮椅,为啥被骂?顶级做市商!DBC职梦学员收到Citadel Securities (US) 一面邀请!活不起了!加拿大三明治飙到40加元一个,网友:吃点别的不香吗?日增320TB数据,从ClickHouse迁移至ByConity后,查询性能十分稳定!微软希望将Windows完全迁移到云端活不起了!加拿大这个品牌的三明治飙到40加元一个,网友:吃点别的不香吗?中国唯一的海上民族:京族,为何从越南迁移到广西生活?chì rè?zhì rè?千词万字“返场赛”来了!明尼周末不无聊|抓住夏天的尾巴去Split Rock Lighthouse State Park看灯塔吧首届欧洲化学奖颁布,荷兰催化领域专家 Bert Weckhuysen 获奖!Out of the Blind Box: Chinese Students Can Choose Own Roommates餐馆不香吗?这个法拉盛华男太坏了!开宝马X5就是富贵吗?周扬青回应与罗志祥复合,网友:一个人搞事业不香吗?德国先搞原子弹,为啥被美国抢了先?Young Chinese Obsess Over MBTI, the American Personality Test北京中考出分,高分段腰斩!帝都妈妈紧急转轨到这所30年IB校,三年后冲牛剑藤不香吗?景德镇文艺复兴关门:真LiveHouse凉透了,假LiveHouse却赢麻了购买Powerhouse Museum 《大气记忆》澳大利亚首映门票!参与抽奖有机会赢取价值100澳币礼品包!还在用「共享充电宝」当大怨种?几十块的2万毫安充电宝不香吗!时光里的答案(九十五)苏格兰阿勒浦(Ullapool),小船倒影ClickHouse 正在退出开源世界?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。