亚马逊年终王炸!两大自研AI芯片性能飙升,推AI助手硬刚微软,联手老黄造最强超算公众号新闻2023-11-29 14:11AWS最强自研训练芯片炸场,还有新一代服务器CPU。作者 | 智东西编辑部智东西11月28日美国拉斯维加斯报道,北京时间11月29日凌晨,全球第一大公有云巨头AWS(亚马逊云科技)扔出了其生成式AI年终“王炸”。摇滚乐开场,AWS的CEO亚当·塞利普斯基(Adam Selipsky)在一阵掌声中登上re:Invent舞台。距离微软和OpenAI联盟的GPT-4新品“轰炸”过去还不到一个月,AWS紧接着放出了新的大招,从芯片、大模型平台、AI应用、生态合作等多个方面秀出“肌肉”:1、推出第四代自研服务器CPU芯片AWS Graviton4,相比三代处理速度快30%,能将处理大型Java应用的速度提升45%。2、推出为生成式AI和机器学习训练设计的云端AI芯片AWS Trainium2,性能比上一代芯片提高到4倍,可提供65ExaFlops超算性能。3、英伟达创始人兼CEO黄仁勋到场,宣布英伟达与AWS达成战略合作,针对生成式AI推出全新超级计算基础设施、软件及服务。4、推出生成式AI助手Amazon Q,支持聊天、生成内容、编程、插件及定制开发,硬杠微软Copilot。▲现场展区展出了Amazon Q免费体验的申请二维码入口5、数据分析平台Amazon QuickSight、呼叫中心服务Amazon Connect等应用接入Amazon Q,具备生成式AI能力。6、Amazon Bedrock大模型平台三大升级:支持微调、知识库RAG(检索增强生成)和持续预训练,全面推出Amazon Bedrock Agent、安全产品Guardrails for Amazon Bedrock预览版。7、S3对象存储服务更新,推出新的高性能、低延迟层S3存储类别Amazon S3 Express One Zone,比Amazon S3标准版快10倍,计算成本降低60%。8、推出4项Zero-ETL(提取、转换、加载)集成功能,使跨数据存储的数据访问和分析更快、更容易。9、推出由生成式AI驱动的Amazon DataZone智能推荐功能,可生成数据资产及其模式的详细说明。10、扩大与OpenAI竞争对手Anthropic的合作,Claude大模型的早期访问、自动定制和微调功能优先提供给AWS客户。11、全球最大药企辉瑞扩大与AWS的合作关系,辉瑞利用生成式AI每年减少了7.5亿至10亿美元的成本。今年4月,AWS推出了覆盖IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)的生成式AI“全家桶”,空降全球AI大模型竞赛战场。(《亚马逊AIGC全家桶推出!迎战微软谷歌,云巨头们杀疯了》)彼时,微软正凭借接入GPT-4的升级产品族风头正盛。AWS则扔出大模型开发平台Amazon Bedrock、计算实例EC2 Trn1n实例和EC2 Inf2及AI编程伴侣CodeWhisperer等产品,亮出亚马逊杀入生成式AI的第一枪。今天,AWS全面披露了亚马逊生成式AI技术堆栈:底层基础架构层+中间基础模型构建工具层+上层基础模型AI应用层,版图逐渐完整。01.新一代服务器CPU、AI训练芯片来了!支持数万亿参数大模型训练会上,AWS CEO塞利普斯基宣布推出第四代自研服务器CPU芯片AWS Graviton4、为生成式AI和机器学习训练设计的云端AI芯片AWS Trainium2。此前已有超过5万个客户使用Graviton。最新推出的Graviton4是AWS迄今最高能效的自研数据中心处理器,基于Arm架构,相比Graviton3,处理速度快30%,内核增加50%,内存带宽增加了75%,能将数据库应用提速40%,将处理大型Java应用的速度提升45%。AWS客户现可开始测试该处理器,由Graviton4支持的R8g实例已推出预览版。Trainium2芯片为拥有数千亿甚至数万亿个参数的基础模型训练做了优化,性能比上一代芯片提高到4倍,内存容量提高到3倍,能效提高到2倍。OpenAI的竞争对手、明星生成式AI独角兽Anthropic计划用Trainium2芯片构建模型。Trainium2将在Amazon EC2 Trn2实例中提供,单个实例中包含16个Trainium芯片,Trn2实例可帮助在下一代EC2 UltraCluster中扩展到多达10万个Trainium2芯片,通过搭配AWS Elastic Fabric Adapter (EFA) 网络互连,提供65ExaFlops超算级性能。基于此,客户只用几周就能训练出有3000亿个参数的大模型。AWS Neuron SDK被用于优化跑在AWS自研训练芯片Trainium和推理芯片Inferentia的机器学习任务,支持主流AI框架。AWS与英伟达宣布扩大战略合作。英伟达创始人兼CEO黄仁勋来到re:Invent大会现场,宣布AWS将支持英伟达最新推出的H200 GPU,并将托管一个特殊的计算集群供英伟达使用。AWS是在云端配备英伟达GH200 Grace Hopper超级芯片的首家云大厂,双方联手推出首款结合Grace Hopper超级芯片与亚马逊UltraCluster扩展功能的云AI超级计算机,以及首次在AWS上提供首个配置GH200 NVL32的英伟达DGX Cloud AI训练即服务(能加速训练参数量超1万亿的生成式AI与大模型)。英伟达与AWS合作构建的AI超级计算机Project Ceiba便部署在亚马逊云科技上,配备GH200 NVL32与Amazon EFA互连技术,包括16384颗GH200超级芯片,能提供65ExaFlops AI算力。此外,AWS宣布其S3对象存储服务推出重大更新:一种新的高性能、低延迟层S3存储类别Amazon S3 Express One Zone,旨在为延迟敏感的应用提供个位数、毫秒级的每秒数十万次数据访问。Amazon S3 Express One Zone的数据访问速度比Amazon S3标准版快10倍,请求成本降低50%,计算成本降低60%。以上从计算到存储新品的发布,主要是AWS的底层基础架构层的能力更新,在其生成式AI技术堆栈中的位置如下图所示。02.Amazon Bedrock全家桶升级,联手OpenAI最强竞对反击微软今日,AWS对Amazon Bedrock生成式AI平台完成了能力新升级。Amazon Bedrock平台是亚马逊4月推出、9月全面开放的大模型开发平台,支持用户调用来自亚马逊自己的泰坦(Titan)模型,以及AI21 Labs、Anthropic、Stability AI等第三方的多样化模型进行调用和定制化开发。1、Amazon Bedrock推出三个客制化功能塞利普斯基宣布,托管服务Amazon Bedrock今天推出三个客制化自定义功能:微调(Fine-tuning)、知识库的RAG(检索增强生成)、持续预训练。通过微调,用户可以提供私有的特定任务标注训练数据集来提高模型的准确性,进一步使基础模型(FM)专业化。Amazon Bedrock现在支持对Meta Llama 2、Cohere Command Light和Amazon Titan模型进行微调。Amazon Bedrock知识库于今年9月推出预览版,今日起全面开放。通过知识库,用户可以安全地将Amazon Bedrock中的基础模型与公司的数据连接起来,并进行检索增强生成,访问附加数据以生成更相关、更具体和更准确的响应,而无需不断重新训练基础模型。此外,从知识库中检索到的所有信息都会注明来源,以提高透明度并减少幻觉。持续预训练可用于Amazon Titan Text模型的公开预览版,包括Titan Text Express和Titan Text Lite。预训练完成后,用户可以收到唯一的模型ID,定制模型将由Amazon Bedrock再次存储。2、全面推出Agents for Amazon BedrockAWS曾在今年7月推出Agents for Amazon Bedrock预览版,今天,塞利普斯基宣布其全面上市。借助Agents for Amazon Bedrock,用户可以通过简单的几个步骤创建和部署完全托管式的Agent,通过动态调用API来执行复杂的业务任务。Amazon Bedrock可以根据用户提供的自然语言指令,如“你是专门处理未结理赔的保险代理人”,完成任务所需的API架构,并使用来自知识库的私有数据来源详细信息创建提示语。Agents for Amazon Bedrock可将用户请求的任务分解为较小的子任务,从而做出周密安排。例如,对于“向所有具有待处理文件的保单持有人发送提醒”,它会将任务分解成:获取特定时间段的理赔,确定所需的文书工作,发送提醒。Agent会确定正确的任务顺序,并处理中途出现的任何错误状况。3、推出Guardrails for Amazon Bedrock预览版AWS推出Guardrails for Amazon Bedrock预览版,根据应用程序需求和AI政策定制保障措施。Guardrails可以跨基础模型,为所有应用程序提供一致的AI安全级别,阻止生成式AI应用程序中不需要的话题,根据AI政策过滤有害内容等。据称,Amazon Bedrock平台目前在全球各行业中已有超10000个客户,包括阿迪达斯、纳斯达克、雷克萨斯等众多知名企业。今日,AWS宣布扩大与OpenAI强力竞对Anthropic的合作。Bedrock客户将拥有其他云所没有的Anthropic旗下Claude大模型的早期访问、自动定制和微调功能的特供功能。Anthropic由前OpenAI工程师于2021年创立,于近期推出了其聊天机器人Claude的2.1版本,支持20万Tokens的超长上下文。Anthropic的CEO兼联合创始人达里奥·阿莫迪(Dario Amodei)亲临了现场,他谈道,Anthropic和AWS之间合作由三个部分组成:计算、客户支持和硬件优化。他们的目标是为客户提供定制模型、专有数据和独特的微调功能,目前已基于AWS的服务在生物医学、法律和金融行业有成功落地案例。与Anthropic扩大合作无疑是AWS反击微软OpenAI联盟的一记重拳。9月25日,亚马逊与Anthropic宣布达成战略合作,亚马逊称将向Anthropic投资至多40亿美元,并拥有该公司的少数股权。全球最大药企辉瑞的首席数字与技术官莉迪亚·丰塞卡(Lidia Fonseca)也来到现场,并宣布扩大与AWS的合作关系。丰塞卡称,辉瑞于2019年开始,通过整合来自多个实验室和仪器的数据来组织其数字基础设施,其与AWS的合作始于新冠疫情时期,“如果没有与AWS的密切关系,我们不可能实现如此巨大的影响力”。她谈道,公司在42周内迁移了12000个应用程序和8000台服务器,退出三个数据中心转而上云,并减少了4700吨二氧化碳排放——相当于1000个家庭一年的能源使用量,这为辉瑞每年节省了4700万美元。这使得辉瑞在生产中的云计算使用率从10%提升到80%,辉瑞还计划在其癌症生产线上继续依赖云计算。此外,使用云服务后,辉瑞的生产效率也得到提升。丰塞卡称,其疫苗产量提高了20%,即每批次多生产约20000支疫苗,公司的疫苗年度产量从以往的2.2亿支增加到2022年的40亿支。丰塞卡还提到,利用生成式AI,辉瑞每年减少了7.5亿至10亿美元的成本。03.硬刚微软Copilot!AI助手Amazon Q亮相,三步完成定制今日,AWS推出了一款新型生成式AI助手Amazon Q。它支持用户输入问题,从而进行聊天、生成内容及插件联动。AWS的客户可以选用Amazon Q服务,通过提问的方式快速解答疑惑,有望节省大量的架构和故障排除时间,并优化工作负载。对于开发者来说,Amazon Q嵌入了AI编程助手CodeWhisperer,将利用其对AWS的深入了解和对代码库的理解,帮助开发者提高开发效率。用户只需编写一个提示符,Amazon Q将会给出一个初版草案,然后用户可以用自然语言对话进行协作迭代。这一功能目前在Amazon Code Catalyst可用,且不久后将向全部客户开放。AWS称用户目前还无法从其他云厂商那获取这一能力。Amazon Q的使用步骤非常简单,大致分为三步:第一步,用户可以通过连接结合自己的组织自定义Amazon Q,它目前支持Salesforce、微软、谷歌、Slack等40多家公司的商业应用程序开箱即用。第二步,一旦连接,Amazon Q就会开始索引用户的所有数据和内容,学习有关业务的所有知识。第三步,用户几乎不需要什么操作,只需在浏览器中打开完全定制的Amazon Q。这一智能助手知道用户身份角色,能针对详细问题给出量身定制的答案,并给出引用参考来源。Amazon Q注重隐私和安全,其宣称不会在外部共享用户数据,也不会使用它来改进基础模型。此外,Amazon Q还通过一组可配置的插件支持用户采取行动。目前,亚马逊旗下的数据分析平台Amazon QuickSight已内置了Amazon Q。业务分析师称,通过简单地告知Amazon Q他们想要可视化内容,就可以创建仪表板和报告,耗时从几小时缩短到了几分钟。QuickSight中的Amazon Q功能自今天起提供预览版。亚马逊的呼叫中心服务Amazon Connect也接入了Amazon Q。在传统的联络中心,用户往往会花费大量时间收集客户信息以了解他们的问题,然后花更多的时间寻找正确答案。但现在,Amazon Connect已通过机器学习、转录和分析使这变得更加容易,支持Agent在Amazon Connect中与Amazon Q聊天,帮助他们快速响应客户问题。亚马逊称,这些应用是Amazon Q落地的一个开始,亚马逊生成式AI的技术堆栈全景图如下所示。04.数据库推出4项Zero-ETL集成,生成式AI自动化组织数据要实现以上所有的功能,背后的数据尤为关键。为此,AWS宣布推出4项Zero-ETL(提取、转换、加载)集成功能:Amazon Aurora PostgreSQL、Amazon DynamoDB、Amazon RDS for MySQL与Amazon Redshift数据库的集成,以及Amazon DynamoDB与Amazon OpenSearch服务的Zero-ETL集成。新的Amazon Aurora PostgreSQL、Amazon DynamoDB、Amazon RDS for MySQL功能与Amazon Redshift数据库的集成使用户可以更轻松地连接和分析来自Amazon Redshift中多个关系型或非关系型数据库中的数据,以进行综合分析。Amazon DynamoDB与Amazon OpenSearch服务的Zero-ETL集成可实现几乎实时的全文和矢量搜索,从而获得跨多个应用的整体洞察力,在提高运营效率的同时降低成本。AWS还宣布推出由生成式AI驱动的Amazon DataZone智能推荐功能,旨在大幅减少为组织数据提供上下文所需的时间。该功能由Amazon Bedrock的模型提供支持,可生成数据资产及其模式的详细说明,并提出分析用例。只需单击一下,即可生成全面的业务上下文。05.结语:对战微软OpenAI联盟,亚马逊如何后发制人?微软和OpenAI联盟风头正盛,全球第一大云巨头也在年底面向AI再出一记重拳。虽然亚马逊对这波生成式反应相对慢一些,但其在IaaS、PaaS、MaaS、SaaS的布局却一点不少,尤其在底层硬件、生态聚合方面表现突出。当下,美国三大公有云服务巨头AWS、微软Azure、谷歌云都已将生成式AI置于重要战略位置,试图为增长疲软的云业务找到新的成长曲线。AWS的打法有所区别,不是对AI公司及消费级产品的重大投资,而是建立平台汇聚众多中小企业的模型,侧重为大模型及终端客户提供底层云基座,有望通过其海量客户及底座规模实现后发制人。(本文系网易新闻•网易号特色内容激励计划签约账号【智东西】原创内容,未经账号授权,禁止随意转载。)微信扫码关注该文公众号作者戳这里提交新闻线索和高质量文章给我们。来源: qq点击查看作者最近其他文章