Redian新闻
>
只改了五行代码接口吞吐量提升了 10 多倍

只改了五行代码接口吞吐量提升了 10 多倍

公众号新闻

来源:juejin.cn/post/7185479136599769125
  • 背景
  • 分析过程
  • 总结

背景

公司的一个ToB系统,因为客户使用的也不多,没啥并发要求,就一直没有经过压测。这两天来了一个“大客户”,对并发量提出了要求:核心接口与几个重点使用场景单节点吞吐量要满足最低500/s的要求。

当时一想,500/s吞吐量还不简单。Tomcat按照100个线程,那就是单线程1S内处理5个请求,200ms处理一个请求即可。这个没有问题,平时接口响应时间大部分都100ms左右,还不是分分钟满足的事情。

然而压测一开,100 的并发,吞吐量居然只有 50 ...

而且再一查,100的并发,CPU使用率居然接近 80% ...

从上图可以看到几个重要的信息。

最小值:表示我们非并发场景单次接口响应时长。还不足100ms。挺好!

最大值:并发场景下,由于各种锁或者其他串行操作,导致部分请求等待时长增加,接口整体响应时间变长。5秒钟。有点过分了!!!

再一看百分位,大部分的请求响应时间都在4s。无语了!!!

所以 1s钟的 吞吐量 单节点只有 50 。距离 500 差了10倍。难受!!!!


分析过程

定位“慢”原因

这里暂时先忽略 CPU 占用率高的问题

首先平均响应时间这么慢,肯定是有阻塞。先确定阻塞位置。重点检查几处:

  • 锁 (同步锁、分布式锁、数据库锁)
  • 耗时操作 (链接耗时、SQL耗时)

结合这些先配置耗时埋点。

  • 接口响应时长统计。超过500ms打印告警日志。
  • 接口内部远程调用耗时统计。200ms打印告警日志。
  • Redis访问耗时。超过10ms打印告警日志。
  • SQL执行耗时。超过100ms打印告警日志。

上述配置生效后,通过日志排查到接口存在慢SQL。具体SQL类似与这种:

<!-- 主要类似与库存扣减 每次-1 type 只有有限的几种且该表一共就几条数据(一种一条记录)-->
<!-- 压测时可以认为 type = 1 是写死的 -->
update table set field = field - 1 where type = 1 and filed > 1;

上述SQL相当于并发操作同一条数据,肯定存在锁等待。日志显示此处的等待耗时占接口总耗时 80% 以上。

二话不说先改为敬。因为是压测环境,直接改为异步执行,确认一下效果。

PS:当时心里是这么想的:妥了,大功告成。就是这里的问题!绝壁是这个原因!优化一下就解决了。当然,如果这么简单就没有必要写这篇文章了...

优化后的效果:

嗯...

emm...

好!这个优化还是很明显的,提升提升了近2倍。

此时已经感觉到有些不对了,慢SQL已经解决了(异步了~ 随便吧~ 你执行 10s我也不管了),虽然对吞吐量的提升没有预期的效果。但是数据是不会骗人的。

  • 最大值:已经从 5s -> 2s
  • 百分位值:4s -> 1s

这已经是很大的提升了。

继续定位“慢”的原因

通过第一阶段的“优化”,我们距离目标近了很多。废话不多说,继续下一步的排查。

我们继续看日志,此时日志出现类似下边这种情况:

2023-01-04 15:17:05:347 INFO **.**.**.***.50 [TID: 1s22s72s8ws9w00] **********************
2023-01-04 15:17:05:348 INFO **.**.**.***.21 [TID: 1s22s72s8ws9w00] **********************
2023-01-04 15:17:05:350 INFO **.**.**.***.47 [TID: 1s22s72s8ws9w00] **********************

2023-01-04 15:17:05:465 INFO **.**.**.***.234 [TID: 1s22s72s8ws9w00] **********************
2023-01-04 15:17:05:467 INFO **.**.**.***.123 [TID: 1s22s72s8ws9w00] **********************

2023-01-04 15:17:05:581 INFO **.**.**.***.451 [TID: 1s22s72s8ws9w00] **********************

2023-01-04 15:17:05:702 INFO **.**.**.***.72 [TID: 1s22s72s8ws9w00] **********************

前三行info日志没有问题,间隔很小。第4 ~ 第5,第6 ~ 第7,第7 ~ 第8 很明显有百毫秒的耗时。检查代码发现,这部分没有任何耗时操作。那么这段时间干什么了呢?

  • 发生了线程切换,换其他线程执行其他任务了。(线程太多了)
  • 日志打印太多了,压测5分钟日志量500M。(记得日志打印太多是有很大影响的)
  • STW。(但是日志还在输出,所以前两种可能性很高,而且一般不会停顿百毫秒)

按照这三个思路做了以下操作:

首先,提升日志打印级别到DEBUG。emm... 提升不大,好像增加了10左右。

然后,拆线程 @Async 注解使用线程池,控制代码线程池数量(之前存在3个线程池,统一配置的核心线程数为100)结合业务,服务总核心线程数控制在50以内,同步增加阻塞最大大小。结果还可以,提升了50,接近200了。

最后,观察JVM的GC日志,发现YGC频次4/s,没有FGC。1分钟内GC时间不到1s,很明显不是GC问题,不过发现JVM内存太小只有512M,直接给了4G。吞吐量没啥提升,YGC频次降低为2秒1次。

唉,一顿操作猛如虎。

PS:其实中间还对数据库参数一通瞎搞,这里不多说了。

其实也不是没有收获,至少在减少服务线程数量后还是有一定收获的。

另外,已经关注到了另外一个点:CPU使用率,减少了线程数量后,CPU的使用率并没有明显的下降,这里是很有问题的,当时认为CPU的使用率主要与开启的线程数量有关,之前线程多,CPU使用率较高可以理解。但是,在砍掉了一大半的线程后,依然居高不下这就很奇怪了。

此时关注的重点开始从代码“慢”方向转移到“CPU高”方向。

定位CPU使用率高的原因

CPU的使用率高,通常与线程数相关肯定是没有问题的。当时对居高不下的原因考虑可能有以下两点:

  • 有额外的线程存在。
  • 代码有部分CPU密集操作。

然后继续一顿操作:

  • 观察服务活跃线程数。
  • 观察有无CPU占用率较高线程。

在观察过程中发现,没有明显CPU占用较高线程。所有线程基本都在10%以内。类似于下图,不过有很多线程。

没有很高就证明大家都很正常,只是多而已...

此时没有下一步的排查思路了。当时想着,算了打印一下堆栈看看吧,看看到底干了啥~

在看的过程中发现这段日志:

"http-nio-6071-exec-9" #82 daemon prio=5 os_prio=0 tid=0x00007fea9aed1000 nid=0x62 runnable [0x00007fe934cf4000]
   java.lang.Thread.State: RUNNABLE
 at org.springframework.core.annotation.AnnotationUtils.getValue(AnnotationUtils.java:1058)
 at org.springframework.aop.aspectj.annotation.AbstractAspectJAdvisorFactory$AspectJAnnotation.resolveExpression(AbstractAspectJAdvisorFactory.java:216)
 at org.springframework.aop.aspectj.annotation.AbstractAspectJAdvisorFactory$AspectJAnnotation.<init>(AbstractAspectJAdvisorFactory.java:197)
 at org.springframework.aop.aspectj.annotation.AbstractAspectJAdvisorFactory.findAnnotation(AbstractAspectJAdvisorFactory.java:147)
 at org.springframework.aop.aspectj.annotation.AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(AbstractAspectJAdvisorFactory.java:135)
 at org.springframework.aop.aspectj.annotation.ReflectiveAspectJAdvisorFactory.getAdvice(ReflectiveAspectJAdvisorFactory.java:244)
 at org.springframework.aop.aspectj.annotation.InstantiationModelAwarePointcutAdvisorImpl.instantiateAdvice(InstantiationModelAwarePointcutAdvisorImpl.java:149)
 at org.springframework.aop.aspectj.annotation.InstantiationModelAwarePointcutAdvisorImpl.<init>(InstantiationModelAwarePointcutAdvisorImpl.java:113)
 at org.springframework.aop.aspectj.annotation.ReflectiveAspectJAdvisorFactory.getAdvisor(ReflectiveAspectJAdvisorFactory.java:213)
 at org.springframework.aop.aspectj.annotation.ReflectiveAspectJAdvisorFactory.getAdvisors(ReflectiveAspectJAdvisorFactory.java:144)
 at org.springframework.aop.aspectj.annotation.BeanFactoryAspectJAdvisorsBuilder.buildAspectJAdvisors(BeanFactoryAspectJAdvisorsBuilder.java:149)
 at org.springframework.aop.aspectj.annotation.AnnotationAwareAspectJAutoProxyCreator.findCandidateAdvisors(AnnotationAwareAspectJAutoProxyCreator.java:95)
 at org.springframework.aop.aspectj.autoproxy.AspectJAwareAdvisorAutoProxyCreator.shouldSkip(AspectJAwareAdvisorAutoProxyCreator.java:101)
 at org.springframework.aop.framework.autoproxy.AbstractAutoProxyCreator.wrapIfNecessary(AbstractAutoProxyCreator.java:333)
 at org.springframework.aop.framework.autoproxy.AbstractAutoProxyCreator.postProcessAfterInitialization(AbstractAutoProxyCreator.java:291)
 at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.java:455)
 at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1808)
 at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:620)
 at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:542)
 at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:353)
 at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:233)
 at org.springframework.beans.factory.support.DefaultListableBeanFactory.resolveNamedBean(DefaultListableBeanFactory.java:1282)
 at org.springframework.beans.factory.support.DefaultListableBeanFactory.resolveNamedBean(DefaultListableBeanFactory.java:1243)
 at org.springframework.beans.factory.support.DefaultListableBeanFactory.resolveBean(DefaultListableBeanFactory.java:494)
 at org.springframework.beans.factory.support.DefaultListableBeanFactory.getBean(DefaultListableBeanFactory.java:349)
 at org.springframework.beans.factory.support.DefaultListableBeanFactory.getBean(DefaultListableBeanFactory.java:342)
 at cn.hutool.extra.spring.SpringUtil.getBean(SpringUtil.java:117)
        ......  
        ......

上边的堆栈发现了一个点:在执行getBean的时候,执行了createBean方法。我们都知道Spring托管的Bean都是提前实例化好放在IOC容器中的。createBean要做的事情有很多,比如Bean的初始化,依赖注入其他类,而且中间还有一些前后置处理器执行、代理检查等等,总之是一个耗时方法,所以都是在程序启动时去扫描,加载,完成Bean的初始化。

而我们在运行程序线程堆栈中发现了这个操作。而且通过检索发现竟然有近200处。

通过堆栈信息很快定位到执行位置:

<!--BeanUtils 是 hutool 工具类。也是从IOC容器获取Bean 等价于 @Autowired 注解 -->
RedisTool redisTool = BeanUtils.getBean(RedisMaster.class);

而RedisMaster类

@Component
@Scope("prototype")
public class RedisMaster implements IRedisTool {
    // ......
}

没错就是用了多例。而且使用的地方是Redis(系统使用Jedis客户端,Jedis并非线程安全,每次使用都需要新的实例),接口对Redis的使用还是比较频繁的,一个接口得有10次左右获取Redis数据。也就是说执行10次左右的createBean逻辑 ...

叹气!!!

赶紧改代码,直接使用万能的 new 。

在看结果之前还有一点需要提一下,由于系统有大量统计耗时的操作。实现方式是通过:

long start = System.currentTimeMillis();
// ......
long end = System.currentTimeMillis();
long runTime = start - end;

或者Hutool提供的StopWatch

这里感谢一下huoger 同学的评论,当时还误以为该方式能够降低性能的影响,但是实际上也只是一层封装。底层使用的是 System.nanoTime()

StopWatch watch = new StopWatch();
watch.start();
// ......
watch.stop();
System.out.println(watch.getTotalTimeMillis());

而这种在并发量高的情况下,对性能影响还是比较大的,特别在服务器使用了一些特定时钟的情况下。这里就不多说,感兴趣的可以自行搜索一下。

最终结果:

排查涉及的命令如下:

  • 查询服务进程CPU情况:top –Hp pid
  • 查询JVM GC相关参数:jstat -gc pid 2000 (对 pid [进程号] 每隔 2s 输出一次日志)
  • 打印当前堆栈信息:jstack -l pid >> stack.log

总结

结果是好的,过程是曲折的。总的来说还是知识的欠缺,文章看起来还算顺畅,但都是事后诸葛亮,不对,应该是时候臭皮匠。基本都是边查资料边分析边操作,前后花费了4天时间,尝试了很多。

  • 「Mysql :」 Buffer Pool 、Change Buffer 、Redo Log 大小、双一配置...
  • 「代码 :」 异步执行,线程池参数调整,tomcat 配置,Druid连接池配置...
  • 「JVM :」 内存大小,分配,垃圾收集器都想换...

总归一通瞎搞,能想到的都试试。

后续还需要多了解一些性能优化知识,至少要做到排查思路清晰,不瞎搞。

最后5行代码有哪些:

  • 「new Redis实例:」 1
  • 「耗时统计:」 3
  • 「SQL异步执行 @Async:」 1

上图最终的结果是包含该部分的,时间原因未对SQL进行处理,后续会考虑Redis原子操作+定时同步数据库方式来进行,避免同时操数据库

TODO

问题虽然解决了。但是原理还不清楚,需要继续深挖。

「为什么createBean对性能影响这么大?」

如果影响这么大,Spring为什么还要有多例?

首先非并发场景速度还是很快的。这个毋庸置疑。毕竟接口响应时间不足50ms。

所以问题一定出在,并发createBean同一对象的锁等待场景。根据堆栈日志,翻了一下Spring源码,果然发现这里出现了同步锁。相信锁肯定不止一处。

org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#doCreateBean

「System.currentTimeMillis并发度多少才会对性能产生影响,影响有多大?」

很多公司(包括大厂)在业务代码中,还是会频繁的使用System.currentTimeMillis获取时间戳。比如:时间字段赋值场景。所以,性能影响肯定会有,但是影响的门槛是不是很高。

「继续学习性能优化知识」

吞吐量与什么有关?

首先,接口响应时长。直接影响因素还是接口响应时长,响应时间越短,吞吐量越高。一个接口响应时间100ms,那么1s就能处理10次。

其次,线程数。现在都是多线程环境,如果同时10个线程处理请求,那么吞吐量又能增加10倍。当然由于CPU资源有限,所以线程数也会受限。理论上,在 CPU 资源利用率较低的场景,调大tomcat线程数,以及并发数,能够有效的提升吞吐量。

最后,高性能代码。无论接口响应时长,还是 CPU 资源利用率,都依赖于我们的代码,要做高性能的方案设计,以及高性能的代码实现,任重而道远。

CPU使用率的高低与哪些因素有关?

CPU使用率的高低,本质还是由线程数,以及CPU使用时间决定的。

假如一台10核的机器,运行一个单线程的应用程序。正常这个单线程的应用程序会交给一个CPU核心去运行,此时占用率就是10%。而现在应用程序都是多线程的,因此一个应用程序可能需要全部的CPU核心来执行,此时就会达到100%。

此外,以单线程应用程序为例,大部分情况下,我们还涉及到访问Redis/Mysql、RPC请求等一些阻塞等待操作,那么CPU就不是时刻在工作的。

所以阻塞等待的时间越长,CPU利用率也会越低。也正是因为如此,为了充分的利用CPU资源,多线程也就应运而生(一个线程虽然阻塞了,但是CPU别闲着,赶紧去运行其他的线程)。

一个服务线程数在多少比较合适(算上Tomcat,最终的线程数量是226),执行过程中发现即使tomcat线程数量是100,活跃线程数也很少超过50,整个压测过程基本维持在20左右。

END

官方站点:www.linuxprobe.com

Linux命令大全:www.linuxcool.com

刘遄老师QQ:5604215

Linux技术交流群:2636170

(新群,火热加群中……)

想要学习Linux系统的读者可以点击"阅读原文"按钮来了解书籍《Linux就该这么学》,同时也非常适合专业的运维人员阅读,成为辅助您工作的高价值工具书!


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
两行代码解决大语言模型对话局限!港中文贾佳亚团队联合 MIT 发布超长文本扩展技术真正觉醒的家庭:只改变自己,不改变孩子探寻西西里与马耳他的历史脚印(8)指针没用好,一行代码让公司损失6000万美元《吉林省留守儿童和困境儿童关爱服务质量提升三年行动实施方案》不到1000行代码,PyTorch团队让Llama 7B提速10倍改了一行代码,数组遍历耗时从10.3秒降到了0.5秒!五倍吞吐量,性能全面包围Transformer:新架构Mamba引爆AI圈约270万行代码!我国自主研发,今日发布GPT-4惨遭削弱,偷懒摸鱼绝不多写一行代码,OpenAI已介入调查第一章 走进东中夜夫人_小星星两行代码解决大模型对话局限,港中文贾佳亚团队联合 MIT 发布超长文本扩展技术AI正在使全球代码质量下降!1.53亿行代码深度分析报告出炉消费降级,但衣品提升了?还不是靠它们红海局势紧张,斯里兰卡科伦坡港吞吐量大幅增长简单有效!Direct Inversion:三行代码提升基于扩散的图像编辑效果LLM生成延迟降低50%!DeepSpeed团队发布FastGen:动态SplitFuse技术,提升2.3倍有效吞吐量AI也造代码屎山!研究发现GitHub Copilot代码可维护性差,偏爱“无脑重写”而非重构复用已有代码一行代码提高大模型10%性能,开发者:免费午餐简单有效!Direct Inversion: 三行代码提升基于Diffusion的图像编辑效果不到 600 行代码实现了《愤怒的小鸟》翻版,GPT-4+DALL·E 3+Midjourney 撼动游戏圈!忍不了了,在德国上了五年学,食堂修了五年4K画质3D合成视频,渲染速度提升30多倍,论文作者带你解读新研究探寻西西里与马耳他的历史脚印(7)2行代码,「三体」一次读完!港中文贾佳亚团队联手MIT发布超长文本扩展技术,打破LLM遗忘魔咒长盛基金固收团队:投资是一场“长跑”,以团队的力量提升投资者的获得感网友600行代码做出翻版“愤怒的小鸟”,却没有一行是自己写的!6021 血壮山河之随枣会战 南昌之战 14Redis创始人开源最小聊天服务器,仅200行代码全球代码质量骤降,罪魁祸首竟是AI!1.53亿行代码深度分析报告出炉吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了一场67万行代码的应用重构《孤注一掷》的创作症候与质量提升
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。