Redian新闻
>
让3D编辑像PS一样简单!GaussianEditor:在几分钟内完成3D场景增删改!

让3D编辑像PS一样简单!GaussianEditor:在几分钟内完成3D场景增删改!

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【视觉和Transformer】微信交流群

扫码加入CVer知识星球可以最快学习到最新顶会顶刊上的论文ideaCV从入门到精通资料,以及最前沿项目和应用!发论文,强烈推荐!

在CVer微信公众号后台回复:GaussianEditor,即可下载论文pdf和代码链接!快学起来!

转载自:机器之心




3D 编辑在游戏和虚拟现实等领域中发挥着至关重要的作用,然而之前的 3D 编辑苦于耗时间长以及可控性差等问题,很难应用到实际场景。近日,南洋理工大学联合清华和商汤提出了一种全新的 3D 编辑算法 GaussianEditor,首次实现了在 2-7 分钟完成对 3D 场景可控的多样化的编辑,全面超越了之前的 3D 编辑工作。

近三年来,3D 编辑领域的工作普遍聚焦于 NeRF(神经辐射场),这是因为 NeRF 不仅能高保真地完成 3D 场景建模,而且其隐式特性极大地提高了可扩展性,相较点云、网格等传统方法有着显著的优势。然而 NeRF 依赖高维多层感知网络(MLP)对场景数据进行编码,这也带来了一定限制。它难以直接修改场景的特定部分,同时在图像修复和场景组合等任务上增加了复杂性。这种复杂性不仅影响了训练过程,也制约了其在实际应用中的应用。


GaussianEditor 为了解决上述问题,另辟蹊径,选择了高斯溅射(Gaussian Splatting)作为其 3D 表示。Gaussian Splatting 是半年前提出的一种新型 3D 表示,该表示已经在 3D,4D 重建等多项 3D 任务上超越了 NeRF,刚面世就引发了 3D 领域广泛的关注,是今年 3D 领域最大的突破之一。Gaussian Splatting 表示具有极好的前景和潜力, GaussianEditor 更是首个实现了对这种 3D 表示完成编辑的工作。该项目已开源,并提供了 WebUI 界面,便于学习和使用。


  • 论文地址:https://arxiv.org/abs/2311.14521

  • 主页地址:https://buaacyw.github.io/gaussian-editor/


Gaussian Splatting 虽然有着高效的渲染算法,但其作为显示表示,对其的编辑存在着不小的挑战。一个主要问题是缺乏有效的方法准确识别编辑目标,这对于精确可控的编辑至关重要。此外,已有研究表明,使用高度随机的生成指导(如 Stable Diffusion 等生成扩散模型)优化 Gaussian Splatting(GS)会遇到重大挑战。这可能是因为 GS 直接受到损失中随机性的影响,与神经网络缓冲的隐式表示不同。这种直接暴露导致更新不稳定,训练过程中高斯点的属性直接改变。此外,GS 的每个训练步骤可能涉及大量高斯点的更新,而这一过程没有神经网络风格的缓冲机制。这些问题会导致 GS 的过度流动性阻碍了其在训练中向隐式表示那样的精细结果收敛。


为了解决上述问题,团队首先引入了高斯语义追踪来完成对 Gaussian Splatting(GS)的精确控制。高斯语义追踪在训练过程中始终能够识别出需要编辑的高斯点。这与传统的 3D 编辑方法不同,后者通常依赖于静态的 2D 或 3D 掩码。随着 3D 模型的几何形状和外观在训练中的变化,这些掩码的会逐渐失效。高斯语义追踪则是通过将 2D 分割掩码投影到 3D 高斯点上并为每个高斯点分配语义标签来实现训练全程的追踪。随着训练过程中高斯点的变化,这些语义标签使得能够追踪到特定的目标高斯点。高斯语义追踪算法能确保只有目标区域被修改,从而实现精确和可控的编辑。


下图中红色区域为被追踪的目标区域,语义追踪的区域会随着训练过程动态更新来确保其有效性。



此外,为了应对 Gaussian Splatting(GS)在高度随机的生成指导下难以实现精细结果的重大挑战,GaussinEditor 采用一种新的 GS 表示方式:层次化高斯溅射(Hierarchical Gaussian Splatting,HGS)。在 HGS 中,高斯点根据它们在训练过程中的稠密化的顺序被组织成不同的世代。在较早的稠密化过程中形成的高斯点被视为较老的世代,它们受到更严格的约束,目的是保持它们的原始状态,从而减少它们的流动性。相反,后期阶段形成的高斯点被视为较年轻的世代,受到较少或没有约束,以提高其适应性。HGS 的设计有效地调节了 GS 的流动性,通过对较老的世代施加限制的同时保持了较新世代的灵活性。这种方法使得持续优化朝向更好的结果成为可能,从而模拟了隐式表示中通过神经网络实现的缓冲功能。





GaussianEditor 在此基础上提出了高斯溅射表示的增、删算法。在删除目标方面,该团队开发了一种专门的局部修复算法,能有效地消除了对象与场景交界处的伪影。在添加目标方面,GaussianEditor 能根据用户提供一个的文本提示和 2D 掩码来为指定区域添加指定目标。GaussianEditor 先借助 2D 图像 Inpainting 算法生成要添加的对象的单视图图像。然后,通过 Image to 3D 的算法将该图像转换成一个 3D GS。最后将该目标并入到高斯场景中。


在对比实验上,GaussianEditor 在视觉质量,量化指标,可控性,生成速度上都大幅度超过了之前的工作。




该团队还通过消融实验验证了其提出的高斯语义追踪和层次化高斯表示的有效性。



GaussianEditor 作为一种先进的 3D 编辑算法,重点在于灵活和快速地编辑 3D 场景,并首次实现了对高斯溅射的编辑。


该算法的关键特点包括:


  1. Gaussian 语义追踪:它能在训练过程中持续识别需要编辑的高斯点,确保只有目标区域被编辑。 

  2. 层次化 Gaussian Splatting(HGS):这是一种新的 GS 表示方式,通过在不同训练阶段形成的高斯点之间建立层次结构,以有效管理 GS 场景的流动性,并模拟隐式表示中神经网络的缓冲功能。

  3. 3D 场景的增加和删除算法:GaussianEditor 专为 GS 开发设计了 3D 场景的增删算法,能够高效地从场景中移除或添加特定对象。


在CVer微信公众号后台回复:GaussianEditor,即可下载论文pdf和代码链接!快学起来!

CVPR / ICCV 2023论文和代码下载
后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集

计算机视觉和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer444,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!


扫码加入星球学习


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
弥合2D和3D生成之间的次元壁!X-Dreamer:高质量的文本到3D生成模型最短 3 天内完成接入!腾讯云向量数据库正式对外全量开放公测生活里的幸运和不幸运中国“X”老板VS.日本“X”逸翁铺设10元餐食零售全场景,「味美优品」完成3000万元A轮融资丨早起看早期画个框、输入文字,面包即刻出现:AI开始在3D场景「无中生有」了无语!几分钟内作案2次 芝加哥酒行遭持枪抢劫 员工物品都拿走The Missing Driver: How a Tragedy Sparks Kindness Across China好消息!移民局设置申请积压期限,必须期限内完成!减少积压率到20%以内!11月必看!“新世界三大男高音”Juan Diego Flórez首次亮相澳洲!基金委专家揭秘“函审”:一半专家2小时内完成审核。提示:递交前最重要的,是这个事情从手游到小游戏,“全场景增长”怎么做分割一切「3D高斯」版来了:几毫秒完成3D分割、千倍加速Rust编写的Zed编辑器开源:约27万行代码、主打“高性能”OpenHarmony 4.0正式发布,增删改代码8849882行神秘的大杂院(十二)一朵白色的椰叶花(下)用Colingo,开发AI应用就像做可颂一样简单【案例分享】为准新人一周内完成婚前协议是怎样的体验?2024,赚钱和呼吸一样简单一撮白发,显老10岁!用它染发和洗头一样简单,瞬间减龄在这些「就业服务做得最好」的大学,找工作像吃饭一样简单!一个女人,如果能在几件事上保持安静,说明她很不简单边跑外卖边上大学!他30天内完成落户、入学……向微软“复仇”!支持OpenAI、Copilot 的Zed编辑器要干掉VS Code:Rust+少插件,速度贼快LLM一句话瞬间生成3D世界,未公布代码已获141星!或将引发3D建模行业革命摔倒了,服老了偷鸡摸狗---暗搞台独媲美GPT-4V,仅使用1.2M数据、8个A100,一天内完成训练,LLaVA-1.5刷新11个基准SOTA一家五口全部感染后才发现,甲型H3N2没你想那样简单VAST AI让3D成为图文、视频之后的下一种内容形态丨专访宋亚宸10岁男孩感染死亡后才发现,不按套路出拳的这波病毒没你想那样简单胡渊鸣全新创业项目Meshy曝光:一句话生成3D游戏资产,仅需一分钟比VS Code快得多!用Rust重写,支持OpenAI、Copilot 的Zed编辑器开源了太猖狂!贼开始偷飞机……亚裔男花费数年修复古董飞机 几分钟内惨被盗分割一切"3D高斯"来了!上交&华为提出SAGA:几毫秒完成3D分割一切!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。