Redian新闻
>
数据中心:CPU空间巨大,国内厂商份额却极低

数据中心:CPU空间巨大,国内厂商份额却极低

公众号新闻

全球 CPU 商用市场基本被 IntelAMD 两家垄断,国产 CPU 具备广阔拓展空间。CPU 目前从市场占有率来说,Intel 依靠其强大的 X86 生态体系和领先的制造能力,在通用 CPU 市场占据领先地位。2021 年,Intel 市场份额不低于 80%AMD 近期追赶势头明显,其他厂商整体市场份额不超过 7%

英特尔优势降低,数据中心领域集中度有所降低。2022 年,数据中心领域 Intel 市场占有率为71%,较 21 年下降 10pctsAMD 22 年市占率快速提升 8pcts 20%,亚马逊、Ampere 等新兴玩家份额快速提升,给总计份额不足 5%的国产厂商发展带来了借鉴意义。

全球 GPU 市场为三足鼎立的寡头竞争格局,英伟达在独显领域一家独大。在独立显卡市场上,长期以来都是 AMD NVIDIA 两家的二人转,2022 Intel 正式杀入了显卡市场,目前独立 GPU市场则主要由 NVIDIAAMD 和英特尔三家公司占据,2022 Q4 全球独立 GPU 市场占有率分别为 85%9%6%,其中,NVIDIA PC 端独立 GPU 领域市场占有率优势明显。

相关阅读:(GPU技术篇)


1、多数参数我国CPU具备比肩能力,但性能差距大

影响国内CPU市占率的主要是技术差异,即产品性能。CPU性能的主要影响因素为频率和IPC其他影响 CPU 性能的因素还有总线宽度、制程、存储、内核数、封装技术等。

1)主频,外频和倍频和 IPC主频是 CPU 的时钟频率,即 CPU 的工作频率,一般来说,一个时钟周期完成的指令数是固定的,所以主频越高,CPU单位时间运行的指令数越多。外频即CPU和周边传输数据的频率,具体是指 CPU 到芯片组之间的总线速度,CPU 的外频决定着整块主板的运行速度。产生的输出信号频率是输入信号频率的整数倍称为倍频,倍频和外频相乘就是主频,当外频不变时,提高倍频,CPU主频也就越高。IPCCPU每一个频率周期里处理的指令数量。

2)地址总线宽度。地址总线是专门用来传送地址的,CPU 通过地址总线来选用外部存储器的存储地址,总线宽度决定了 CPU 可以访问的物理地址空间(寻址能力),简单地说就是 CPU 到底能够使用多大容量的内存。例如 32 位的地址总线,最多可以直接访问 4GB 的物理空间。8 位微机的地址总线为 16 位,则其最大可寻址空间为 2^16=64KB

3)数据总线宽度。数据总线宽度决定了 CPU 与内存以及输入、输出设备之间一次数据传输的信息量。

4)制程和封装。CPU 的生产需要经过硅提纯、切割晶圆、影印、蚀刻、分层、封装、测试 7个工序,制程工艺的提升或更小的制程对于 CPU 性能的提升影响明显,主要表现为 CPU 频率提升以及架构优化两个方面。一方面,工艺的提升与频率紧密相连,使得芯片主频得以提升;另一方面工艺提升带来晶体管规模的提升,从而支持更加复杂的微架构或核心,带来架构的提升。

5)工作电压。指的是 CPU 正常工作所需的电压。低电压能够解决耗电多和发热过高的问题,使 CPU 工作时的温度降低,工作状态稳定。

6)高速缓冲存储器。它是一种速度比内存更快的存储设备,用于缓解 CPU 和主存储器之间速度不匹配的矛盾,进而改善整个计算机系统的性能。很多大型、中型、小型以及微型计算机中都采用高速缓存。

7)除上述性能指标外,CPU 还有其他如接口类型、多媒体指令集、装封形式、整数单元和浮点单元强弱等性能影响指标。

多数参数我国 CPU 具备比肩能力,IPC性能是最主要差距。目前通过公开信息可以看出,主频、核心数、内存类型等指标我国 CPU 厂商差异不大,具备一定的比肩能力,但落实到具体性能决定指标 IPC,仅 Intel AMD 会公布 IPC“相比上一代提升了多少”,其他国产 CPU IPC 性能来看大致落后于 IntelAMD 几年水平。

相关阅读:(CPU技术篇)

2、指令级架构与生态绑定多年,创新面临知识产权等多重壁垒

指令集是 CPU 所执行的指令的二进制编码方法,是软件和硬件的接口规范。日常交流中有时也把指令集称为架构。CPU 按照指令集可分为 CISC(复杂指令集)和 RISC(精简指令集)两大类,CISC CPU 目前主要是 x86 架构,RISC CPU 主要包括 ARMRISC-VMIPSPOWER 构等。

指令集架构与生态绑定多年,创新面临知识产权、时间等多重壁垒。历经几十年的发展,全球形成了 WintelWindows+Intel)和 AAAndroid+ARM)两大信息化生态体系,并且都由美国主导,在生态和知识产权上都形成了自己的“领地”。中国之前没有指令集,重新搭建或者在现有的开源指令集基础上修改,会面临知识产权问题以及前期需要大量的试错优化过程。且新的指令集需要新的生态来适配,所需要的操作系统、基础软件和各种应用软件都需要重新适配,这也是目前新指令集发展的一个难点。

1x86 架构:主导桌面/服务器 CPU 市场

基于 CISC(复杂指令集)的 x86 架构是一种为了便于编程和提高存储器访问效率的芯片设计体系,包括两大主要特点:一是使用微代码,指令集可以直接在微代码存储器里执行,新设计的处理器,只需增加较少的晶体管电路就可以执行同样的指令集,也可以很快地编写新的指令集程式;二是拥有庞大的指令集,x86 拥有包括双运算元格式、寄存器到寄存器、寄存器到存储器以及存储器到寄存器的多种指令类型。

x86 架构主要参与者包括 IntelAMD、海光、兆芯等。

2ARM 架构:崛起移动市场和 MCU 市场

ARM 架构过去称作进阶精简指令集机器,是一个 32 位精简指令集处理器架构,其广泛地使用在许多嵌入式系统设计,近年来也因其低功耗多核等特点广泛应用在数据中心服务器市场。早期ARM 指令集架构的主要特点:一是体积小、低功耗、低成本、高性能;二是大量使用寄存器,且大多数数据操作都在寄存器中完成,指令执行速度更快;三是寻址方式灵活简单,执行效率高;四是指令长度固定,可通过多流水线方式提高处理效率。

ARM 架构的 CPU 参与者包括飞腾、鲲鹏等,还有诸多 MCU 厂商用 ARM 架构设计相关产品,包括意法半导体、兆易创新、普冉股份、恒烁股份等。

3RISC-V 架构:物联网时代的新选择

RISC-V是加州大学伯克利分校设计并发布的一种开源指令集架构,其目标是成为指令集架构领域Linux, 主要应用 于物联 网(IoT) 领域, 但可扩展 至高性能计 算领域 。RISC-V 采用BSDLicense 发布,由于允许衍生设计和开发闭源,吸引了一大批公司的关注,目前已有不少公司开发基于 RISC-V IP 核,如 Si-Five、台湾晶心、阿里平头哥等已可提供基于 RISC-V 的处理器 IP 核,部分企业如兆易创新、北京君正等已开发出基于 RISC-V MCU 芯片等。但整体上,由于 RISC-V 产业生态还比较薄弱,未来的发展仍有较长一段路要走。

RISC-V 架构的参与者包括阿里平头哥,MCU 厂商包括国芯科技、赛科技等。

4MIPS 架构:在学术界影响广泛

MIPS 是高效精简指令集计算机体系结构中的一种,MIPS 的优势主要有三点:一是发展历史早,MIPS 1990 年代已经广泛使用在服务器、工作站设备上。二是在学术界影响广泛,计算机体系结构教材都是以 MIPS 为实际例子。三是 MIPS 在架构授权方面更为开放,授权门槛远低于 x86ARM,在2019年曾经有开放授权的实际动作,并且 MIPS允许授权商自行更改设计、扩展指令,允许二次授权。

5POWER 架构:在部分汽车控制中有所应用

POWER 架构是由 IBM 设计的一种 RISC 处理器架构,POWER 在大型机领域独具优势。POWER3 是全球首款 64 位架构处理器,开始应用铜互联和 SOI(绝缘体上硅)技术。直至POWER9 依然追求最高性能,不仅具备乱序执行、智能线程等技术,还实现了 SMP(对称多处理技术)的硬件一致性处理。POWER 架构 CPU 价格高昂,主要应用于高端服务器领域,市场份额逐渐减少。

POWER 架构目前恩智浦、飞思卡尔和国芯科技的部分产品中有采用。

CPU 专用 EDA 国产替代难度大。我国的 CPU 专用 EDA 工具例如数字仿真、逻辑综合、建模、布局布线等水平比较差,长期依赖国外产品,尚无法完成完整集成电路的功能设计、综合验证和物理设计等全流程的软件工具集群,完全替换应用的难度大。

3、AI芯片的关键特征包含数据特点、计算范式、精度、重构能力等

1)新型的计算范式:控制流程简化、计算量增大

AI 计算包括传统计算和新的计算特质,处理的内容往往是非结构化数据(视频、图片等)。处理的过程通常需要很大的计算量,基本的计算主要是线性代数运算(如张量处理),而控制流程则相对简单。

2)训练和推断:需要高效的数据处理能力

AI 系统通常涉及训练(Training)和推断(Inference)过程。简单来说,训练过程是指在已有数据中学习,获得某些能力的过程;而推断过程则是指对新的数据,使用这些能力完成特定任务(比如分类、识别等)。满足高效能机器学习的数据处理要求是 AI 芯片需要考虑的最重要因素。

3)数据精度:低精度成为趋势

低精度设计是 AI 芯片的一个趋势,在针对推断的芯片中更加明显。对一些应用来说,降低精度的设计不仅加速了机器学习算法的推断(也可能是训练),甚至可能更符合神经形态计算的特征。

4、AI芯片设计趋势

1)云端训练和推断:大存储、高性能、可伸缩

存储的需求(容量和访问速度)越来越高,处理能力推向每秒千万亿次(Peta FLOPS),并支持灵活伸缩和部署。随着 AI 应用的爆发,对推断计算的需求会越来越多,一个训练好的算法会不断复用。推断和训练相比有其特殊性,更强调吞吐率、能效和实时性,未来在云端很可能会有专门针对推断的 ASIC 芯片(如 Google 的第一代 TPU),提供更好的能耗效率并实现更低的延时。

2)边缘设备:也需要具备一定的学习、本地训练能力

相对云端应用,边缘设备的应用需求和场景约束要复杂很多,针对不同的情况可能需要专门的架构设计。抛开需求的复杂性,目前的边缘设备主要是执行“推断”。在这个目标下,AI 芯片最重要的就是提高“推断”效率。目前,衡量 AI 芯片实现效率的一个重要指标是能耗效率——TOPs/W,这也成为很多技术创新竞争的焦点。未来,越来越多的边缘设备将需要具备一定的“学习”能力,能够根据收集到的新数据在本地训练、优化和更新模型。这也会对边缘设备以及整个 AI 实现系统提出一些新的要求。最后,在边缘设备中的 AI 芯片往往是 SoC 形式的产品,AI部分只是实现功能的一个环节,而最终要通过完整的芯片功能来体现硬件的效率。这种情况下,需要从整个系统的角度考虑架构的优化。因此,终端设备 AI 芯片往往呈现为一个异构系统,专门的 AI 加速器和 CPUGPUISPDSP 等其它部件协同工作以达到最佳的效率。

3)软件定义芯片:能够实时动态改变功能,满足软件不断变化的计算需求

AI 计算中,芯片是承载计算功能的基础部件,软件是实现 AI 的核心。这里的软件即是为了实现不同目标的 AI 任务,所需要的 AI 算法。对于复杂的 AI 任务,甚至需要将多种不同类型的 AI 算法组合在一起。即使是同一类型的 AI 算法,也会因为具体任务的计算精度、性能和能效等需求不同,具有不同计算参数。因此,AI 芯片必须具备一个重要特性:能够实时动态改变功能,满足软件不断变化的计算需求,即“软件定义芯片”。

更新提醒:“存储系统基础知识全解(终极版)”和“服务器基础知识全解(终极版)”已经更新发布,还没有获取的读者,请在点击“原文链接”在微店留言获取PDF阅读版本)。



转载申明:转载本号文章请注明作者来源,本号发布文章若存在版权等问题,请留言联系处理,谢谢。

推荐阅读
更多架构相关技术知识总结请参考“架构师全店铺技术资料打包(全)”相关电子书(41本技术资料打包汇总详情可通过“阅读原文”获取)。

全店内容持续更新,现下单“架构师技术全店资料打包汇总(全)”一起发送“服务器基础知识全解(终极版)和“存储系统基础知识全解(终极版)pdf及ppt版本,后续可享全店内容更新“免费”赠阅,价格仅收249元(原总价439元)。


温馨提示:

扫描二维码关注公众号,点击阅读原文链接获取架构师技术全店资料打包汇总(全)电子书资料详情



微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
2023经济数据中的四个变化《晴空月儿明》&合唱《约定》AMD推出锐龙8040系列APU,采用Zen4 CPU+RDNA3 GPUAI狂飙时代,数据中心的角色与使命面朝大海,君临城下的魅力城市KKR和华平在AI与云热潮下进军亚洲数据中心人工智能和加密挖矿业务导致数据中心能耗快速增加深入了解浮点运算——CPU和GPU算力是如何计算的两百米爱情System76 升级 Serval WS Linux 移动工作站:最高 i9-14900HX CPU+RTX 4070 GPU数据中心芯片,英特尔能王者归来吗?39 项 Linux 基准测试:英伟达数据中心 CPU Grace 媲美 Threadripper 7000揭秘EQDS:AI时代数据中心的新宠百万token上下文窗口也杀不死向量数据库?CPU笑了为什么说GPU再火,AI平台也少不了强力的CPU芯片巨头,决战数据中心永仁心:新一代长期型人工心脏血液泵EVA-Pulsar™ 重磅上市!【动脉严选新品鉴第50期】广东省能源咨询规划研究中心:2023深圳数字能源白皮书千载难逢!皇后镇超级开发地块待售!绝佳分区、想象空间巨大!耗资 2.2 亿美元的数据中心项目落户北沃斯堡家居修理系列: 漏水篇(1)微软或将在Win11推出Copilot文件分析功能;贾斯汀·霍塔德将出任英特尔数据中心与AI事业部负责人丨AIGC日报GPU、CPU和DRAM接口互联技术冬天下雪会在地上长出“蛋糕卷”?为什么在我国却极其罕见GPU用得太多了,数据中心碰到大麻烦突发!美国拟限制中国公司使用其云数据中心训练AI模型;TikTok、英雄联盟开发商裁员;哄哄模拟器爆火 | AI周报SpaceX将于1月31日向国际空间站发射天鹅号货运飞船;七部门:加快突破GPU芯片等技术,建设超大规模智算中心丨智能制造日报英伟达获5亿美元天价大单!印数据中心一口气买下16000块H100/GH200台湾大选与外省人情结System76 升级 Serval WS Linux 移动工作站,最高 i9-14900HX CPU+RTX 4070 GPU从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成突破2D空间组,鲲羽生物携19项医疗器械证,推动3D空间组学技术落地|脑创中心人类活动大数据应用分中心:中国人本城市观测报告2023国产CPU里程碑!龙芯最强处理器、自研GPGPU来了,披露Tock“三剑客”英伟达首次透露:上季度 180 亿美元数据中心收入,AI 推理已高达四成
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。