诺奖得主Haroche:量子计算机不是“曼哈顿计划” | 专访
2012年诺贝尔物理学奖得主:Serge Haroche教授
导读:
我们曾评论说量子计算机是理论家的梦想,但却是实验人员的噩梦。时至今日,仍然如此:我们仍然不知道该如何实现大规模容错量子计算机。
——Serge Haroche,2012年诺贝尔物理学奖得主
Serge Haroche教授对量子光学中的量子电动力学研究有重要贡献,在实验量子力学领域享有盛名,被誉为“腔量子电动力学的实验奠基人”,2012年他因“开发能够测量和操纵单个量子系统的开创性实验方法”和美国物理学家大卫·温兰德(David J. Wineland)共同获得诺贝尔物理学奖。
尽管是量子光学和量子信息学领域的先驱,Haroche教授对于量子计算的未来非常审慎。他认为,量子计算机从提出之日起,就是理论家的梦想,实验人员的噩梦,直到今天,我们仍然不知道该如何实现大规模容错量子计算机。
他也对当前一些不切实际地承诺和夸大量子计算机的能力的“量子炒作”现象提出警告。他指出,量子炒作非常愚蠢,将会导致两个严重后果:第一,若一直承诺无法兑现的事,政策制定者们会逐渐失去耐心,并且产生反感情绪,进而削减研究资金;第二,会让政策制定者误将尚处于基础研究阶段的量子计算列为机密研究,这将严重影响正常的国际交流,反而阻碍了这一领域的发展。
“我认为,量子计算机不是‘曼哈顿计划’,你无需刻意去保护它。它是一个完全开放的领域,我们只能从竞争、共享信息和数据的过程中获利,而这也是我们唯一能够实现的事。”Haroche教授说。
以下为访谈的下半部分。《赛先生》获Advanced Photonics授权转载。
相关阅读:“诺三代”Serge Haroche:中国要警惕“资历崇拜”
陆朝阳(左)对话Serge Haroche(右)
天然原子研究或将回归主流
陆朝阳:您作为腔量子电动力学(腔QED)研究领域的先驱,能否向广大读者描述自己最早开展研究时的状态,以及自己对于这一领域未来发展动态的预测?
随着时间的推移,真实原子开始被人造原子取代,研究人员尝试研究超导量子比特在射频腔及其他波导中的相互作用;与真实原子相比,这种做法涉及到的数学原理与物理方法都是相同的,并被命名为“电路量子电动力学”(电路QED)。电路QED有很多优点,其中之一是人造原子可以通过常见的光刻沉积技术在硅基晶片上产生,相关领域已有了很多优秀的实验成果。
但随着研究的深入,基于真实原子的研究或将回归主流,因为研究人员发现能够利用光镊技术固定单原子,并使其具备极高的灵敏度。利用光镊技术能够将原子摆放在腔内任意一个确定的位置,并使得这些原子与腔进行相互作用。因此,腔QED仍有较大的发展前景,尤其是在量子信息领域内。此外,电路QED和腔QED研究之间的学术争鸣,也同样令人感到兴奋。
友好竞争推进量子科学的进步
陆朝阳:当您在二十世纪七八十年代开始进行这些具有开创性研究意义的实验时,您或许无法预知这些实验能够带来如此深远的影响。例如,今天我们走进来时,可以看到走廊上挂着光镊里德堡原子的海报。此外,正如您所提到的,腔量子电动力学目前正在演化为电路量子电动力学,现在它也成为了超导量子计算研究中一个投资巨大的领域。光镊和超导现在是量子计算最具前景的两个例子,您能否对二者进行评述?
这个领域未来究竟会变成什么模样,我对此一无所知,但我对量子计量学的研究进展十分感兴趣。使用量子计量系统,能够得到更加精确的测量结果。我们在实验中使用里德堡态原子检测微小的电场和磁场时,证实了这种系统的确能够获得更优的测量结果。其他人所做的工作也同样引人注目,其中最受关注的是在原子光学钟上的研究,目前能够实现的精度已经达到了10-19量级;这一数值水平极其优秀,我敢肯定它能够用于基础科学研究和实用设备的研制,例如改进版的GPS。
此外,包括原子重力仪和原子陀螺仪在内,原子干涉测量法的进展也值得注意。但在量子科学这一领域,人们谈论最多的可能还是寻找量子计算机。它也许能够在未来某天实现,但依旧十分遥远。
量子计算还处于基础研究阶段
陆朝阳:我同意您的观点,量子计量学会有更多优秀、令人感到兴奋的研究成果。您能否预测量子计量学和量子计算这两个领域在未来5~10年内将会产生哪些实质性的突破?
所以,我认为“量子炒作”的现象确实存在,并且具有很多实际的危害。首先,如果你一直承诺一些无法兑现的事,政策制定者们会逐渐失去耐心,并且产生反感情绪,进而削减研究资金;其次,更加普遍的事实真相是,你一直强调量子计算机时代即将到来,并将为一个国家带来决定性的战略优势,决策者会因此认为它是一项绝对机密的研究。而当其被定义为国家级机密时,又会发生什么?当年轻学生想要从中国前往欧洲或者美国进行交流时,他们的签证会被直接拒绝,因为人们认为这些信息是不能被共享的。因此,“量子炒作”绝对是一件愚蠢的事。但很抱歉地说,这件事归根结底来源于部分研究人员过分宣传了自身的工作。当你与不懂科学的人谈话时,如果夸大了某项事情,他们便会信以为真,结果就会导致仍处于基础科学研究领域信息的自由交换受到不可避免的限制。
我认为,量子计算机不是“曼哈顿计划”,你无需刻意去保护它。它是一个完全开放的领域,我们只能从竞争、共享信息和数据的过程中获利,而这也是我们唯一能够实现的事。如果某些人实事求是,不夸大其词,就不会给人留下“量子计算机能解决当今人类面临所有问题”的错误印象(注:Michio Kaku教授出版的《Quantum Supremacy》,宣称“人类面临的问题没有一个是量子计算不能解决的”。)。
事实上,26年前,我和Jean-Michel Raimond就曾为Physics Today撰写过一篇评论文章,其标题是“Quantum Computing: Dream or Nightmare? ”。在这篇文章中,我们曾评论说量子计算机是理论家的梦想,但却是实验人员的噩梦。时至今日,仍然如此:我们仍然不知道该如何实现大规模容错量子计算机。虽然David Wineland对此有着不同的看法(他比我更乐观),但这并没有什么关系,我们仍能够以友好的方式在科学问题上保持不同意见。
好奇心将引领你的职业冒险
陆朝阳:如果您重回二十岁,正要开始博士阶段的学习生涯,但假设您已拥有了目前所有的记忆,您希望给年轻的自己什么建议?这个问题有点科幻哦。
如果我以目前在生活中获得的所有知识为起点,那么我可能会被寻找存在不同生命形式外星的研究吸引。这是一场奇妙的探索,它能够使我们认清自己在宇宙中的位置;它同样是一门基础科学,涉及到了许多前沿的技术,其中不乏我们熟知的光学技术,例如,对系外行星的分析,离不开基于光频梳技术的多普勒光谱仪;同时,你还需要许多自适应光学技术的知识,这与我的团队在量子模拟实验中用于制备光镊阵列的技术类似。此外,为了寻找系外行星,你还需要大量化学、生物学以及光谱学的知识,这是一个跨学科研究的领域,意味着你永远不会孤独地工作,你必将与那些与你有着共同激情和研究热情的研究人员通力合作,对你来说,这也将是一笔巨大的财富。我个人最喜欢这项研究的一点是,它从先验上看是完全无用的。我们或许永远也无法抵达这些行星,但在好奇心的驱使下,我们仍然会积极地了解这些难以企及的神秘世界。
就在刚才,我想到了一个同时涉及观测和实验的科学领域,这便是我最熟悉的物理问题。对于那些有着强大数学头脑的年轻科学家,他们心中的“圣杯”是引力量子理论。这是一个悬而未决的科学问题,迄今为止最聪明的理论学家们也未能找到解决方案。我建议追求这一宏伟目标的年轻科学家,也要对物理学中其他问题持开放态度,例如凝聚态物理学或量子信息科学,这些问题或许不是那么具有挑战性,更容易解决,并很有可能带来有趣的新发现,或许它们会给我们一些触及圣杯的提示。
最近,我用法语撰写了一本受众群体更广泛的书,书名译成中文叫做《光的探索》。通过对几个世纪人类获取光学知识的描述,我在书中表达了自己对于科学发展的迷恋。科学方法始于17世纪,通过对空间及时间的定量测量,光速首次被预估。在书籍中,我试图遵循从伽利略时代直到现代科学的思想谱系。我同样被光学发展历史中科学知识的进步所吸引,这其中涉及到观察、实验与理论,以及不同要素之间的交流演变。通过撰写这本书,我也有机会重新反思科学家和学者们的生活,这其中不仅有物理学家,还有数学家、探险家以及哲学家,他们都为人类光学知识体系的成长做出了自己的贡献。
图1 Serge Haroche所著,“Exploring the Light, from Galileo to Quantum Physics” 中英文版封面图
我在书中还想表明,基础科学和应用科学之间存在着持久且富有成效的相互作用。光学知识的发现促进了众多新仪器的发明,例如望远镜、光谱仪、干涉仪、激光器、原子钟等;同时,这些仪器灵敏度的不断提升,使得科学家能够进行更加精确的观测,发掘新的现象将科学带向新的方向,并最终产生了类似广义/狭义相对论、量子物理学以及宇宙学等令人着迷的成果。我们目前仍身处这个过程,例如,如果有一天我们发现了一种将广义相对论与量子物理学相结合的方法,它势必来自更精确的实验观测。解释自然界中新奇现象的本质,必将涉及到许多新的仪器,无论是更强大的加速器,抑或是更精确的原子钟或原子干涉仪。通过撰写这本书,我想让更多的读者了解到现代科学的探索历程。为了使这本书更贴近个人生活,我还在其中谈到自己作为一名科学家的生活,从我早期接受物理训练,到我领导研究团队进行实验。我试图在书中传达这样一种观点:科学是一场冒险,拥有不同背景的科研人员参与其中,并为之做出自己的贡献;而科学家们同属于一个群体,对真理有着同样的热情。这就是我想在书中表达的科学之美。
我在巴黎的课题组里有一位中国学生吴海龙,他非常仔细地审阅了中文译本,并撰写了中文序言。令我感到吃惊的是,中文译本比原版书本要薄得多,这意味着中文字符所携带的信息量,比拉丁字母要多得多!
Serge Haroche教授,1944年9月出生于摩洛哥。法国物理学家、法兰西公学院名誉教授、法国科学院院士、欧洲科学院院士、美国国家科学院外籍院士、美国人文与科学院外籍院士、巴西科学院外籍院士。研究方向为量子光学和量子信息学,对量子光学中的量子电动力学研究做出重要贡献,在实验量子力学领域享有盛名,被业内誉为“腔量子电动力学的实验奠基人”。曾获法国物理学会GrandPrix Jean Ricard奖(1983年),爱因斯坦激光科学奖(1988年),洪堡奖(1992年),富兰克林研究所 Michelson奖章(1993年),罗马第一大学Tomassoni奖(2001年),欧洲物理学会量子电子学奖(2002年),国际量子通信、测量和计算大会量子通信奖(2002年),美国光学学会Townes奖(2007年),法国国家科学研究中心(CNRS)金质奖章(2009年),德国物理学会和美国光学学会Herbert Walter奖(2010年),诺贝尔物理学奖(2012年,与David Wineland共享)。
陆朝阳教授简介:
陆朝阳,中国科学技术大学教授、上海量子科学中心副主任、中国光学工程学会理事。长期致力于量子信息和量子计算等交叉领域的研究,在《现代物理评论》《自然》《科学》等期刊杂志发表论文140余篇,连续四年被评为全球“高被引科学家”。多自由度量子隐形传态工作入选英国物理学会Breakthrough of The Year,“九章”系列光量子计算原型机和实数量子力学检验的工作连续入选美国物理学会Highlights of The Year,他的工作还被联合国教科文组织评选为“年度世界十大数字创新技术”。曾获国家自然科学一等奖、何梁何利科学与技术创新奖、《自然》中国科学之星、探索奖、新基石研究员、菲涅耳奖、仁科芳雄亚洲奖、IUPAP-ICO光学青年科学家奖、美国光学学会阿道夫隆奖章、美国物理学会量子计算奖、CLEO 戈登纪念演讲奖和亚洲成就奖等。
《光的探索》
[法] 塞尔日·阿罗什 著
特别提示:赛先生书店所购图书可开发票,请在购书备注中留下开票信息(单位、税号和邮箱),确认收货后,由出版社开具。
欢迎关注我们,投稿、授权等请联系
商务合作,请添加微信SxsLive2022咨询
微信扫码关注该文公众号作者