Redian新闻
>
这就是OpenAI神秘的Q*?斯坦福:语言模型就是Q函数

这就是OpenAI神秘的Q*?斯坦福:语言模型就是Q函数

公众号新闻

机器之心报道

编辑:Panda


还记得去年 11 月底爆出来的 Q* 项目吗?这是传说中 OpenAI 正在秘密开展、或将带来颠覆性变革的 AI 项目。如果你想回忆一下,可参看机器之心当时的报道《全网大讨论:引爆 OpenAI 全员乱斗的 Q * 到底是什么?》简而言之,Q* 很可能是 Q 强化学习和 A* 搜索这两种 AI 方法的结合。

 

近日,斯坦福大学一个团队的一项新研究似乎为这一研究方向的潜力提供了佐证,其声称现在已经取得非凡成就的「语言模型不是一个奖励函数,而是一个 Q 函数!」由此发散思维猜想一下,也许 OpenAI 秘密的 Q* 项目或许真的是造就 AGI 的正确方向(或之一)。

  


  • 论文标题:From r to Q∗: Your Language Model is Secretly a Q-Function

  • 论文地址:https://arxiv.org/pdf/2404.12358.pdf


在对齐大型语言模型(LLM)与人类意图方面,最常用的方法必然是根据人类反馈的强化学习(RLHF)。通过学习基于人类标注的比较的奖励函数,RLHF 能够捕获实践中难以描述的复杂目标。研究者们也在不断探索使用强化学习技术来开发训练和采样模型的新算法。尤其是直接对齐方案(比如直接偏好优化,即 DPO)凭借其简洁性收获了不少拥趸。

 

直接对齐方法的操作不是学习奖励函数然后使用强化学习,而是在上下文多臂赌博机设置(bandit setting)中使用奖励函数与策略之间的关系来同时优化这两者。类似的思想已经被用在了视觉 - 语言模型和图像生成模型中。

 

尽管有人说这样的直接对齐方法与使用 PPO 等策略梯度算法的经典 RLHF 方法一样,但它们之间还是存在根本性差异。

 

举个例子,经典 RLHF 方法是使用终点状态下的稀疏奖励来优化 token 层面的价值函数。另一方面,DPO 则仅在上下文多臂赌博机设置中执行操作,其是将整个响应当成单条臂处理。这是因为,虽然事实上 token 是一次性只生成一个,但研究强化学习的人都知道,密集型奖励是有益的。

 

尽管直接对齐算法颇引人注意,但目前人们还不清楚它们能否像经典强化学习算法那样用于序列。

 

为了搞清楚这一点,斯坦福这个团队近日开展了一项研究:在大型语言模型中 token 层面的 MDP 设置中,使用二元偏好反馈的常见形式推导了 DPO。

 

他们的研究表明,DPO 训练会隐含地学习到一个 token 层面的奖励函数,其中语言模型 logit 定义最优 Q 函数或预期的总未来奖励。然后,他们进一步表明 DPO 有能力在 token MDP 内灵活地建模任意可能的密集奖励函数。

 

这是什么意思呢?

 

简单来说,该团队表明可以将 LLM 表示成 Q 函数并且研究表明 DPO 可以将其与隐式的人类奖励对齐(根据贝尔曼方程),即在轨迹上的 DPO 损失。



并且他们证明这种表示可以拟合任何在轨迹上的反馈奖励,包括稀疏信号(如智能体应用)。

 

实验

 

他们也进行了实验,论证了三个可能对 AI 社区有用的实用见解。

 

第一,他们的研究表明尽管 DPO 是作为上下文多臂赌博机而派生出来的,但 DPO 模型的隐含奖励可在每个 token 层面上进行解释。

 

在实验中,他们以定性方式评估了 DPO 训练的模型是否能够根据轨迹反馈学习 credit assignment。有一个代表性示例是商讨工作就职的场景,图 1 给出了两个答案。



其中左边是正确的基础摘要,右边是经过修改的版本 —— 有更高层的职位和相应更高的工资。他们计算了这两个答案的每个 token 的 DPO 等价的奖励。图 1 中的每个 token 标注的颜色就正比于该奖励。

 

可以看到,模型能够成功识别对应于错误陈述的 token,同时其它 token 的值依然相差不大,这表明模型可以执行 credit assignment。

 

此外,还可以看到在第一个错误(250K 工资)的上下文中,模型依然为其余 token 分配了合理的值,并识别出了第二个错误(management position)。这也许表明模型具备「缝合(stitching)」能力,即根据离线数据进行组合泛化的能力。该团队表示,如果事实如此,那么这一发现将有助于强化学习和 RLHF 在 LLM 中的应用。

 

第二,研究表明对 DPO 模型进行似然搜索类似于现在很多研究中在解码期间搜索奖励函数。也就是说,他们证明在 token 层面的阐述方式下,经典的基于搜索的算法(比如 MCTS)等价于在 DPO 策略上的基于似然的搜索。他们的实验表明,一种简单的波束搜索能为基础 DPO 策略带来有意义的提升,见图 2。

 

 

第三,他们确定初始策略和参考分布的选择对于确定训练期间隐性奖励的轨迹非常重要。

 

从图 3 可以看出,当在 DPO 之前执行 SFT 时,被选取和被拒绝的响应的隐含奖励都会下降,但它们的差距会变大。

 


当然,该团队最后也表示,这些研究结果还需要更大规模的实验加以检验,他们也给出了一些值得探索的方向,包括使用 DPO 让 LLM 学会基于反馈学习推理、执行多轮对话、充当智能体、生成图像和视频等。





© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
丰田、本田、马自达等车企造假,斯坦福团队抄袭清华系大模型,巴菲特公司股票跌98%,周星驰首部短剧上线,这就是今天的其他大新闻!马斯克:聪明的人要多生育燃气灶污染致白血病哮喘?斯坦福大学再发惊人研究AI早知道|支付宝灰度测试智能助理;苹果开源推出高效语言模型系列 OpenELM今日arXiv最热NLP大模型论文:揭露大语言模型短板,北京大学提出事件推理测试基准浓人,nèng死淡人宾州詹金斯植物园(Jenkins Arboretum),幽幽小景使用 IPEX-LLM 加速英特尔®至强®可扩展处理器上的大语言模型推理GPT-4「荣升」AI顶会同行评审专家?斯坦福最新研究:ICLR/NeurIPS等竟有16.9%评审是ChatGPT生成LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」斯坦福15张图揭示最新AI 动态:开源风评又“被害”,谷歌、OpenAI争当基础模型“劳模”央行重磅发声:买国债不是QE,更不是财政赤字货币化大模型如何用因果性?最新《大型语言模型与因果推断在协作中的应用》全面综述红杉资本入局,马斯克的AI公司接近达成60亿美元融资;苹果发布基于开源训练和推理框架的语言模型OpenELM丨AIGC日报这个团队做了OpenAI没Open的技术,开源OpenRLHF让对齐大模型超简单宇宙尽头是编制?斯坦福博士毕业,回国考乡镇公务员…深圳/香港/上海内推 | 商汤研究院基础语言模型团队招聘大语言模型算法研究员微软拟与OpenAI投资1000亿美元建AI超算;Databricks 推出1320亿参数大语言模型 DBRX丨AIGC日报张维迎:语言腐败在当今中国已经到了无以复加的地步我们就是黑手党,怎么着美国顶级学府抄袭中国大模型?斯坦福紧急道歉!哈佛医学博士:语言暴力会改变大脑结构,对孩子影响巨大AI早知道|商汤发布日日新5.0大模型;微软推出小语言模型Phi-3;腾讯旗下协作SaaS产品全面接入混元大模型真.时间管理大师?斯坦福教授被曝同时交往6女ICLR上新 | 强化学习、扩散模型、多模态语言模型,你想了解的前沿方向进展全都有华为回应智界 S7 截胡小米 SU7,雷军表态/苹果正在自研设备端大语言模型/「欧洲版OpenAI」洽谈融资5亿爬藤鄙视链末端的中国理工男彻底没救了?斯坦福妈妈:勤能补拙不如“学习印度人”……神秘模型gpt2-chatbot实力被赞超越GPT-4:sam亲自确认,或是OpenAI全新模型阿里董事长蔡崇信:训练AI模型就像教育孩子 学习三四年就能赶超人类博士脚踝的灵活性《东风第一枝 - 元夕》苹果发高效语言模型 OpenELM;小米策划 15 万元新车;AI 成功改写人类 DNA | 极客早知道你有数学脑袋吗?斯坦福大学的免费儿童数学课:太宝藏了!今日arXiv最热NLP大模型论文:斯坦福发布法律指令数据集LawInstruct,统一17个辖区24种语言WWW 2024 | 阿里等提出GraphTranslator,将图模型对齐大语言模型
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。