Redian新闻
>
华为最新研究挑战Scaling Law

华为最新研究挑战Scaling Law

公众号新闻
克雷西 发自 凹非寺
量子位 | 公众号 QbitAI

“Scaling Law不是万金油”——关于大模型表现,华为又提出了新理论。

他们发现,一些现象无法用Scaling Law来解释,进而开展了更加深入的研究。

根据实验结果,他们认为Transformer模型的成绩,与记忆力高度相关

具体来说,他们发现Scaling Law的缺陷主要有这两种表现:

一是一些小模型的表现和大一些的模型相当甚至更好,如参数量只有2B的MiniCPM,表现与13B的Llama接近。

二是在训练大模型时,如果过度训练,模型表现不会继续增加,反而呈现出了U型曲线。

经过深入研究和建模,团队结合了Hopfield联想记忆模型,提出了大模型表现的新解释。

有人评价说,联想记忆是人类所使用的一种记忆方法,现在发现大模型也会用,可以说是AI理解力的跃迁。

不过需要指出的是,这项研究虽有挑战之意,但并非对Scaling Law的否定,而是对其局限性的客观思考和重要补充,同时作者对前者的贡献也做出了肯定。

构建全新能量函数

作者首先进行了假设,提出了新的能量函数,并根据Transformer模型的分层结构,设计了全局能量函数。

能量函数是一种描述系统状态的数学工具,它将系统的每个可能状态映射到一个实数值,函数值越低系统越“稳定”。

可以简单地说,大模型的训练过程就是在寻找能量函数的最小值。

具体到本文,作者提出了这样的能量函数,其中x表示查询向量,ρi表示记忆:

根据数学规律不难看出,当x与所有ρi的距离d(x, ρi)都很大时,每一项exp(-d(x, ρi))都会趋近于0,进而导致E(x)趋近于正无穷。

所以,E(x)在记忆向量ρi附近取得较小值,在远离所有记忆的地方取得较大值,因此最小化E(x)就相当于找到与x最相似的记忆。

作者进一步证明,E(x)与现代连续Hopfield网络(MCHN)的能量函数在数学形式上是等价的。

(Hopfield网络是一种经典的联想记忆神经网络模型,由物理学家John Hopfield在1982年提出。)

这两个函数的相似性,可以通过下图更加直观地展现:

不过需要注意的是,Transformer通常由多个相同的注意力层堆叠而成,为了刻画整个网络的行为,有必要设计一个全局的能量函数。

作者借鉴了majorization-minimization(优化-最小化)的思想,将每一层的能量函数E_t(x)视为全局能量E_global(x)的一个紧上界。

于是,前向传播的过程可以被视为依次最小化每一个E_t(x),进而最小化E_global(x)。

通过巧妙地设计各层的能量函数使其互为紧上界(一个函数在另一个函数之上,但两者非常接近),让每层的局部能量函数都紧紧“束缚”住全局能量函数,作者构建出一个连贯的、可优化的全局能量函数,成功刻画了Transformer的分层结构。

大模型表现,记忆是关键

为了验证这些假设,研究人员开展了一系列实验。

首先,作者在预训练的GPT-2模型上对记忆力进行了分析。

他们分析了模型最后一层的输出表示与训练样本之间的关系,并计算了每个输出向量与其最近训练样本的距离,绘制出了这些距离的分布直方图。

结果表明,大多数输出向量都集中在以训练样本为中心的局部区域内,距离中心大约10个单位。

这个结果与作者基于能量函数得出的理论预测(最优记忆半径约为√(n/2πe))非常接近。

这说明,Transformer的每一层都在进行一种基于相似性的记忆检索,其性能主要取决于记忆半径的大小。

进一步地,作者又在不同数据规模上训练了GPT-2,并分析损失函数变化。

作者在三个不同规模(100%、1%、0.1%)的OpenWebText数据集上训练了GPT-2模型,并记录了其训练和验证损失的变化曲线。

实验结果表明,当数据规模很小时,模型很容易过拟合,表现为训练损失迅速下降到0,而验证损失却居高不下;

当数据规模较大时,训练和验证损失则接近且平稳,最终都显著高于0。

也就是说,当数据规模足够大、模型可以很好地“记忆”训练集时,其最终的损失会稳定在理论预测的下界附近,从另一个角度说明了模型的性能确实主要取决于其记忆容量。

最后,作者又在问答数据集上训练了原始Transformer,同时也分析了损失函数变化。

具体来说,他们在一个受控的任务(将声明句改写为疑问句)上训练了一个纯Transformer模型。

他们发现,随着训练的进行,模型的损失函数呈现出明显的分段下降趋势,每个阶段对应于一定数量的训练样本被记忆,最终稳定在了理论预测的下界附近。

这个实验不仅验证了作者关于损失下界的理论预测,也直观地展示了Transformer通过逐层能量最小化来实现记忆的过程。

总之,通过理论建模和多项实验验证,作者最终得出结论,Transformer的性能主要取决于其记忆训练样本的能力

同时根据构建并被验证的全局能量函数,作者还指出,为达到最优性能,模型参数量应随训练数据量的平方而线性增长。

如果你认为对你有所启发,不妨阅读原论文了解更多细节。

论文地址:
https://arxiv.org/abs/2405.08707

量子位年度AI主题策划正在征集中!

欢迎投稿专题 一千零一个AI应365行AI落地方案

或与我们分享你在寻找的AI产品,或发现的AI新动向


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
第一次,见 by law 说。。。。。。。。Law school 申请要注意些什么?GPT-4「荣升」AI顶会同行评审专家?斯坦福最新研究:ICLR/NeurIPS等竟有16.9%评审是ChatGPT生成【健康】最新研究显示:吸烟使人发胖Suno AI:音乐生成迎来MidJourney时刻,Suno能否挑战Spotify?Science|新研究从结构上揭示DNA促旋酶解开DNA缠结之谜前华为最帅HR入职京东,开始帮刘强东直播带货Meta新研究挑战CV领域基操:ViT根本不用patch,用像素做token效果更佳【高分论文深度解读】董波/陈凯/冷梁团队联手利用进化节点动物,探索胚胎早期发育调控机制的最新研究个人感慨之118 住房医疗免费Discovering Shanghai’s Jiangnan Culture Through Ancient TownsScience子刊|新研究表明女性每月卵巢周期时间很可能与昼夜节律有关骄傲!安省11年级华裔女孩代表加拿大出战STEM!研究让导师叫好!《出生的地方》&《听悲伤的情歌》给你个不坚持的理由!Science Advances最新研究: 长期生酮饮食会诱导细胞衰老,而间歇性生酮饮食能阻止细胞老化积累2024春假伦敦邮轮行之汉堡请教一下买个有in股价久违飙涨,商汤要用自己的Scaling law挑战GPT4余承东最新演讲:无论把我放到什么岗位,都能带出华为最有战斗力的团队改变候静波教授专访:OCT的临床应用和最新研究进展 | CCIF 2024Pika联创参与新研究:Diffusion能抢GPT的活了!成功挑战自回归文本范式最新研究:每天4杯咖啡,癌症复发和死亡风险降低32%!但有一种类型的咖啡不行......越变越蠢?美科学家最新研究:人类智商在倒退!新辅助治疗能否给没手术机会的前列腺癌患者带来获益?最新研究这样说!PI收购Odyssey Semiconductor资产,推动用GaN挑战SiC澳洲最新研究:2/3结果来自中国,少放这个可以活更久!Spring 全家桶版本更新:Spring Boot、Spring Security 和 Spring Modulith一代比一代聪明是真的!最新研究显示:1970年出生人的大脑体积比1930年出生的增加了6.6%,人类大脑正在变大!首次用生成式AI设计抗体,蛋白质设计领域“鼻祖”David Baker的最新研究睡眠与表型年龄呈“U形”关系,要睡在拐点处!最新研究:每天7小时睡眠是最佳“保养品”,过多/少的睡眠时间都会加速衰老华为最新人事调整!余承东,职位有变37岁离异女贷款17万找对象;王婆说媒:我爱你才会有机会最新大模型论文合集!谷歌/微软/Meta/苹果/英伟达/阿里最新研究报告!有没有父母长期住in law suite的? 能不能讲讲亲身感受?华为最新业绩发布;万科再发声!管理层将增持|大公司动态最新研究:超加工食品对大脑的影响早中晚,到底何时是最佳运动时间?Diabetes Care最新研究发现:肥胖人群晚上锻炼收益更大!Science | 开发男性避孕药有戏!新研究发现靶向抑制STK33可使雄性小鼠不育,而且这种抑制是可逆的
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。