Redian新闻
>
请教machine learning 哪个方向比较有前途?
avatar
请教machine learning 哪个方向比较有前途?# CS - 计算机科学
q*g
1
我做的方向是人工智能,主要做的有关machine
learning,(还有部分和别人合作做了些face recognition),现在想申请美国phd。请问
machine learning或者computer vision现在在美国哪个方向funding比较多,比较容易申
请,谢谢!
avatar
m*n
2
why not come to Europe such as UK? In UK, PhD only takes three years.




【在 q****g 的大作中提到】
: 我做的方向是人工智能,主要做的有关machine
: learning,(还有部分和别人合作做了些face recognition),现在想申请美国phd。请问
: machine learning或者computer vision现在在美国哪个方向funding比较多,比较容易申
: 请,谢谢!

avatar
q*g
3
因为本科拿到美国的offer,但是因为据签没有去成,现在发了一些paper,想完成这个心
愿。二是因为,自己也做了3年的research了,发现如果真的想要做出点东西来,需要扎
实的学点基础知识,所以很想上上美国的课程。
请问您了解machine learning吗?觉得它比较有前景的方向在哪里?




【在 m*******n 的大作中提到】
: why not come to Europe such as UK? In UK, PhD only takes three years.
:
: 问
: 申

avatar
m*n
4
As far as I know, i think ML will be promsing in data mining from Web and
text. Google is recuiting many people with ML background. A bit different from
your area though. I am working on semantic web and text mining in general.
good luck though.



recognition),现在想申请美国phd。


【在 q****g 的大作中提到】
: 因为本科拿到美国的offer,但是因为据签没有去成,现在发了一些paper,想完成这个心
: 愿。二是因为,自己也做了3年的research了,发现如果真的想要做出点东西来,需要扎
: 实的学点基础知识,所以很想上上美国的课程。
: 请问您了解machine learning吗?觉得它比较有前景的方向在哪里?
:
: 请
: 易

avatar
q*g
5
thanks a lot!
by the way, are you in usa? if yes, which direction of ML has more funding, or
is more easy to apply?

from




【在 m*******n 的大作中提到】
: As far as I know, i think ML will be promsing in data mining from Web and
: text. Google is recuiting many people with ML background. A bit different from
: your area though. I am working on semantic web and text mining in general.
: good luck though.
:
: 心
: 扎
: recognition),现在想申请美国phd。
: 容

avatar
m*n
6
is it more than obvious that I am not in USA, man? USA is not omniponent,
neither US research.

or




【在 q****g 的大作中提到】
: thanks a lot!
: by the way, are you in usa? if yes, which direction of ML has more funding, or
: is more easy to apply?
:
: from
: 个
: 要
: 较

avatar
q*g
7
maybe right, i just want to see.

funding,
and
different
general.


years.


【在 m*******n 的大作中提到】
: is it more than obvious that I am not in USA, man? USA is not omniponent,
: neither US research.
:
: or
: 这
: 需
: 比

avatar
c*g
8
I think at moment in USA, apply the ML to bioinformatics is pretty hot! But I
don't know how long will it be?





【在 q****g 的大作中提到】
: maybe right, i just want to see.
:
: funding,
: and
: different
: general.
: 成
: ,
: years.
: ,

avatar
q*g
9
I know bioinformatics is very hot recently all over the world. but my reserch
experience is about SVM, PCA, Boosting methods. I did not do any research
about bioinformatics. So do you think it is suitable for me to apply
bioinformatics? Thanks.

I
omniponent,
Web

西

【在 c*****g 的大作中提到】
: I think at moment in USA, apply the ML to bioinformatics is pretty hot! But I
: don't know how long will it be?
:
: 完
: 来
: 多

avatar
l*j
10
Your ML background of course will help the most if you apply ML. A lot of people
are still working on the three areas you mentioned. Why don't you apply to
continue your work and take full advantage of your experience.
So many people are jumping into bioinfo. It's going to be full soon and people
will want to switch again. Be careful when you plan to compete in an extremely
hot area.

【在 q****g 的大作中提到】
: I know bioinformatics is very hot recently all over the world. but my reserch
: experience is about SVM, PCA, Boosting methods. I did not do any research
: about bioinformatics. So do you think it is suitable for me to apply
: bioinformatics? Thanks.
:
: I
: omniponent,
: Web
: 想
: 西

avatar
c*g
11
As I know a lot of people apply SVM to mining biological, chemical
information.

reserch
But
因为本科拿到美国的offer,但是因为据签没有去成,现在发了一些paper,


【在 q****g 的大作中提到】
: I know bioinformatics is very hot recently all over the world. but my reserch
: experience is about SVM, PCA, Boosting methods. I did not do any research
: about bioinformatics. So do you think it is suitable for me to apply
: bioinformatics? Thanks.
:
: I
: omniponent,
: Web
: 想
: 西

avatar
s*n
12
computer vision




【在 q****g 的大作中提到】
: 我做的方向是人工智能,主要做的有关machine
: learning,(还有部分和别人合作做了些face recognition),现在想申请美国phd。请问
: machine learning或者computer vision现在在美国哪个方向funding比较多,比较容易申
: 请,谢谢!

avatar
c*c
13
这个方向有哪些大牛人?

【在 q****g 的大作中提到】
: 我做的方向是人工智能,主要做的有关machine
: learning,(还有部分和别人合作做了些face recognition),现在想申请美国phd。请问
: machine learning或者computer vision现在在美国哪个方向funding比较多,比较容易申
: 请,谢谢!

avatar
c*c
14
加拿大ubc的Alan Mackworth怎么样?
Geoffrey Hinton和这个Mackworth在加拿大的AI方面都比较有名
不过Mackworth好像不是这个方向的?
avatar
i*e
15
Mackworth的主要贡献应该在constraint processing和robotics上
而且这几年学术上已经不太活跃了,没太多新的成果出来
不过在AI圈子里connection还是不错,马上要当AAAI的president了
人十分的nice,而且funding很充裕,呵呵

【在 c***c 的大作中提到】
: 加拿大ubc的Alan Mackworth怎么样?
: Geoffrey Hinton和这个Mackworth在加拿大的AI方面都比较有名
: 不过Mackworth好像不是这个方向的?

avatar
i*e
16
说起ubc来,那里的kevin murphy说不上是大牛,但也算是ML方面的新的star了
人相当smart,新assistant prof干劲十足,phd,postdoc都是跟着超级牛人,人脉很好
我挺看好他的发展,呵呵;傍不上大牛傍上个star跟着一起发展也是不错的

【在 c***c 的大作中提到】
: 加拿大ubc的Alan Mackworth怎么样?
: Geoffrey Hinton和这个Mackworth在加拿大的AI方面都比较有名
: 不过Mackworth好像不是这个方向的?

avatar
q*g
17
Thanks and I also think that applying to continue my previous work about SVM,
PCA is more suitable for me. But since they are more theoretic, do professors
work on them have lot of funding? Or which kind of professors are more
suitable for me to apply?

people
people
extremely
reserch
But

【在 l**j 的大作中提到】
: Your ML background of course will help the most if you apply ML. A lot of people
: are still working on the three areas you mentioned. Why don't you apply to
: continue your work and take full advantage of your experience.
: So many people are jumping into bioinfo. It's going to be full soon and people
: will want to switch again. Be careful when you plan to compete in an extremely
: hot area.

avatar
c*c
18
呵呵,跟买股票似的

【在 i******e 的大作中提到】
: 说起ubc来,那里的kevin murphy说不上是大牛,但也算是ML方面的新的star了
: 人相当smart,新assistant prof干劲十足,phd,postdoc都是跟着超级牛人,人脉很好
: 我挺看好他的发展,呵呵;傍不上大牛傍上个star跟着一起发展也是不错的

avatar
f*p
19
真要好好读faculty们念书时的文章,找有感觉的套瓷,要比股票准。

【在 c***c 的大作中提到】
: 呵呵,跟买股票似的
avatar
l*j
20
Even theoretical cs professors have some funding. ML is not as theoretical as
that, right?

【在 q****g 的大作中提到】
: Thanks and I also think that applying to continue my previous work about SVM,
: PCA is more suitable for me. But since they are more theoretic, do professors
: work on them have lot of funding? Or which kind of professors are more
: suitable for me to apply?
:
: people
: people
: extremely
: reserch
: But

相关阅读
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。