Redian新闻
>
被GPT带飞的In-Context Learning为什么起作用?模型在秘密执行梯度下降

被GPT带飞的In-Context Learning为什么起作用?模型在秘密执行梯度下降

公众号新闻

机器之心报道

编辑:陈萍

In-Context Learning(ICL)在大型预训练语言模型上取得了巨大的成功,但其工作机制仍然是一个悬而未决的问题。本文中,来自北大、清华、微软的研究者将 ICL 理解为一种隐式微调,并提供了经验性证据来证明 ICL 和显式微调在多个层面上表现相似。


继 BERT 之后,研究者们注意到了大规模预训练模型的潜力,不同的预训练任务、模型架构、训练策略等被提出。但 BERT 类模型通常存在两大缺点:一是过分依赖有标签数据;二是存在过拟合现象。


具体而言,现在的语言模型都倾向于两段式框架,即预训练 + 下游任务微调,但是在针对下游任务的微调过程中又需要大量的样本,否则效果很差,然而标注数据的成本高昂。还有就是标注数据有限,模型只能拟合训练数据分布,但数据较少的话容易造成过拟合,致使模型的泛化能力下降。


作为大模型的开路先锋,大型预训练语言模型,特别是 GPT-3 已经显示出令人惊讶的 ICL(In-Context Learning)能力。与微调需要额外的参数更新不同,ICL 只需要一些演示「输入 - 标签」对,模型就可以预测标签甚至是没见过的输入标签。在许多下游任务中,一个大型 GPT 模型可以获得相当好的性能,甚至超过了一些经过监督微调的小型模型。


为何 ICL 的表现如此优秀,在来自 OpenAI 的一篇长达 70 多页的论文《Language Models are Few-Shot Learners》中,他们对 ICL 进行了探索,其目的是让 GPT-3 使用更少的领域数据、且不经过微调去解决问题。


如下图所示,ICL 包含三种分类:Few-shot learning,允许输入数条示例和一则任务说明;One-shot learning,只允许输入一条示例和一则任务说明;Zero-shot learning,不允许输入任何示例,只允许输入一则任务说明。结果显示 ICL 不需要进行反向传播,仅需要把少量标注样本放在输入文本的上下文中即可诱导 GPT-3 输出答案。 


GPT-3 in-context learning

实验证明在 Few-shot 下 GPT-3 有很好的表现:


为什么 GPT 可以在 In-Context 中学习?


尽管 ICL 在性能上取得了巨大的成功,但其工作机制仍然是一个有待研究的开放性问题。为了更好地理解 ICL 是如何工作的,我们接下来介绍一篇来自北大、清华等机构的研究是如何解释的。 


  • 论文地址:https://arxiv.org/pdf/2212.10559v2.pdf

  • 项目地址:https://github.com/microsoft/LMOps


用网友的话来总结,即:「这项工作表明,GPT 自然地学会了使用内部优化来执行某些运行。该研究同时提供了经验性证据来证明 In-Context Learning 和显式微调在多个层面上表现相似。」


为了更好地理解 ICL 是如何工作的,该研究将语言模型解释为元优化器,ICL 解释为一个元优化过程,并将 ICL 理解为一种隐式微调,试图在基于 GPT 的 ICL 和微调之间建立联系。从理论上讲,该研究发现 Transformer 的注意力具有基于梯度下降的对偶优化形式。


在此基础上,该研究提出了一个新的视角来解释 ICL:GPT 首先根据演示示例生成元梯度,然后将这些元梯度应用于原始 GPT 以构建 ICL 模型。


如图 1 所示,ICL 和显式微调共享基于梯度下降的对偶优化形式。唯一的区别是 ICL 通过前向计算产生元梯度,而微调通过反向传播计算梯度。因此,将 ICL 理解为某种隐式微调是合理的


ICR 执行隐式微调 

 

该研究首先定性分析了松弛线性注意力(relaxed linear attention)形式下的 Transformer 注意力,以找出它与基于梯度下降优化之间的对偶形式。然后,该研究将 ICL 与显式微调进行比较,并在这两种优化形式之间建立联系。基于这些理论发现,他们建议将 ICL 理解为一种隐式微调。


首先该研究将 Transforme 注意力看作元优化,将 ICL 解释为一个元优化过程:(1)一个基于 Transformer 的预训练语言模型作为元优化器;(2)通过前向计算根据实例生成元梯度;(3)通过注意力,将元梯度应用于原始语言模型,构建 ICL。


接下来是 ICL 与微调的比较。通过一系列设置后,该研究发现 ICL 与微调有许多共同特性。他们从以下四个方面来组织这些共性:两者都执行梯度下降;相同的训练信息;训练例子的因果顺序相同;都是围绕注意力展开。


考虑到 ICL 和微调之间的所有这些共同属性,该研究认为将 ICL 理解为一种隐式微调是合理的。在本文的其余部分,该研究从多个方面根据经验比较 ICL 和微调,以提供支持这种理解的定量结果。


实验结果


该研究进行了一系列实验来全面比较 ICL 的行为和基于实际任务的显式微调,在六个分类任务上,他们比较了预训练 GPT 在 ICL 和微调设置中关于预测、注意力输出和注意力得分的情况。正如预期的那样,ICL 在预测、表示和注意力级别等方面都与显式微调高度相似。这些结果有力地证明了这一合理性:ICL 执行隐式微调。


 此外,受元优化理解的启发,该研究通过类比基于动量的梯度下降算法设计了一种基于动量的注意力。它始终优于 vanilla attention 的性能。


表 2 显示了在六个分类数据集上 ZSL( Zero-Shot Learning )、ICL 和微调(FT)设置中的验证精度。与 ZSL 相比,ICL 和微调都取得了相当大的改进,这意味着所做的优化都有助于这些下游任务。此外,该研究发现 ICL 在 Few-shot 场景中比微调更好。


表 3 中显示了 6 个数据集上 2 个 GPT 模型的 Rec2FTP 分数。平均而言,ICL 可以从 ZSL 中正确地预测 87.64% 的微调能够纠正的示例。这些结果表明在预测层面,ICL 可以覆盖大多数正确的微调行为。


表 3 还显示了 6 个数据集上 2 个 GPT 模型的示例与层的平均 SimAOU 分数。为了比较,该研究还提供了一个基线指标(Random SimAOU),用来计算 ICL 更新和随机生成更新之间的相似性。从表中可以看出,ICL 更新更类似于微调更新而非随机更新,这意味着在表示层面上,ICL 倾向于按照微调改变的方向来改变注意力结果。


最后,表 3 还显示了 6 个数据集上 2 个 GPT 模型的示例与层的平均 SimAM 分数。作为 SimAM 的基线指标,ZSL SimAM 计算 ICL 注意力权重和 ZSL 注意力权重之间的相似性。通过比较这两个指标,该研究发现,与 ZSL 相比,ICL 更倾向于生成类似于微调的注意力权重。同样在注意力行为层面,该研究证明 ICL 的行为类似于微调。


为了更彻底地探究 ICL 和微调之间的相似性,该研究比较了不同层的 SimAOU 和 SimAM 分数。通过从每个数据集中随机抽取 50 个验证示例,分别绘制了如下图 2 和图 3 所示的 SimAOU 和 SimAM 箱形图。


从图中可以发现,SimAOU 和 SimAM 在较低层出现波动,并且往往在较高层更加稳定。这种现象说明了 ICL 进行的元优化具有前向累积效应,随着累积的增加,ICL 的行为更类似于较高层的微调。


总结


总结而言,本文旨在解释基于 GPT 的 ICL 工作机制。从理论上讲,该研究找出了 ICL 的对偶形式,并建议将 ICL 理解为元优化过程。此外,该研究在 ICL 和特定微调设置之间建立了联系,发现将 ICL 视为一种隐式微调是合理的。为了支持对 ICL 执行隐式微调的理解,该研究综合比较了 ICL 和基于实际任务的微调的行为。结果证明,ICL 类似于显式微调。


此外,受元优化的启发,该研究设计了一种基于动量的注意力,以实现一致的性能改进。作者希望该研究能够帮助更多的人深入了解 ICL 应用和模型设计。


参考链接:

https://www.zhihu.com/question/398114261


2022 Amazon DeepRacer线上赛正在进行中!


Amazon DeepRacer 是 1/18 自动驾驶赛车,专门用于在实际赛道上进行竞赛来测试强化学习模型;使用摄像头查看赛道,并使用强化模型来控制油门和方向盘。

想感受 AI+赛车带来的冲击力,想遇见赛车场上不一样的精彩?这场跨年线上赛,等你加入!

赛事时间:即日起至2022年12月31日12:00

心动不如行动,有哪些大奖等你拿?

  • 第1名:HYUNDAI现代投影仪

  • 第2名:雷蛇机械键盘

  • 第3名:SKG颈椎按摩仪

  • 4-10名:精美音箱

  • 前50名:亚马逊定制帽子
点击阅读原文,注册亚马逊云科技账号即可线上参赛。
提交模型地址:https://us-east-1.console.aws.amazon.com/deepracer/home#raceToken/Vnn3LtF3T9GaJxvbe93EQQ

© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Go 语言上下文 context 底层原理美股IPO市场回暖!太阳能技术公司Nextracker(NXT.US)上市首日涨近27%接连大规模枪击案,加州最严限枪法案为何不起作用?可能永远无法找到大屠杀的动机NeurIPS 2022 | 重振PointNet++雄风!PointNeXt:改进模型训练和缩放策略审视PointNet++“白开水”英语是“white water”吗?| 1 min learning EnglishECMAScript Async Context 提案介绍被ChatGPT带飞的AIGC,能为垂直产业做些什么?脑洞大开!把Transformer当通用计算机用,还能执行in-context learning算法小公司栖身五年,又遭遇裁员“它在秘密监听我的生活!”女子和姐妹讨论恋足癖,亚马逊竟然给她精准推送了这个...令人叫绝的日本推理小说《绝叫》读博的人为什么不开心?Nature全球硕博生满意度大调查,博士生满意度下降明显EMNLP'22 | What and how?模型的学习内容和推理方式探究谷歌和Meta的广告主导地位下降;PHD升任Cynthia Zhang为中国首席客户官(广告狂人日报)我在国内出书的波折[评测]ASRock AMD Radeon RX 7900 XTX/XT Phantom Gaming OC超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet把Transformer当通用计算机用,还能执行in-context learning算法,这项研究脑洞大开我被骗子盯上了!(图)超越ConvNeXt!Transformer 风格的卷积网络视觉基线模型Conv2Former“Facebook在秘密监听我的生活!”女子和姐妹讨论恋足癖,亚马逊竟然给她精准推送了这个...“FB在秘密监听我的生活!”女子和姐妹讨论恋足癖,亚马逊竟然给她精准推送了这个...被GPT带飞的In-Context Learning发展现状如何?这篇综述梳理明白了ChatGPT带飞英伟达股价/ 爱奇艺首次实现全年盈利/ AI作图被判无版权…今日更多新鲜事在此ChatGPT 之后,下一代大型语言模型在哪里?UC Santa Cruz VLAA Lab招全奖Computer Vision/Deep Learning博士天赋“易昺(bǐng)”,创造历史!内资八大|BDO International Tax Intern招聘已开启!熟练使用办公软件者优先考虑博士生申请 | UC Santa Cruz VLAA Lab招全奖Computer Vision/Deep Learning博士对我们而言,ChatGPT带来的影响和机会是什么?内资会计所 | RSM 2023 Technology Risk Consulting Intern,持续热招中In-Context Learning玩法大全ChatGPT 带火大模型!深度解读人工智能大模型在产业中的服务新态势​Retell Lecture / Summarize Spoken Text 究竟如何练习历史在重演?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。