Redian新闻
>
解密!第一个开源架构工作台的构建过程

解密!第一个开源架构工作台的构建过程

科技

构建一个架构工作台并不是一件容易的事,涉及到了一系列的编译器相关的知识,编辑器相关的知识,当然还有其核心的架构相关的知识。工作台架构图所下所示:

在五月底,经历了一系列的磕磕碰碰,我们终于算是 release 了第一个 “可用” 的架构工作台的 alpha 版本(如何定义可用呢?)。在这个早期的 demo 版本里,你可以尝试一下,我们在 ArchGuard 中构建的架构即代码的理念,以及如何围绕于一个系统构建出一个工作台?更有意思的是,当你掌握了构建工作台的能力之后,你就看到到处都是工作台,比如 API 工作台。

在先前的的 “架构工作台” 相关文章中,我们介绍了架构工作台的相关理念,以及它的核心原则与实践。在这篇文章中,我们将继续往下介绍:

  • ArchGuard 如何实现这样一个工作台。

  • 在构建这个 PoC (Proof of Concept,概念证明)的过程中,我们经历了一系列的架构决策。为什么是 A 而不是 B

  • 一些简短的代码示例。

  • 过程中我们遇到的问题。

当然了,要获取更详细的信息,需要从 GitHub 上拉取最新的代码。也可以只尝试 Demo,执行: curl -s https://archguard.org/install.sh | bash -s master (这脚本看上去好像不支持 Windows)。而如果先前,已经在本地搭建过对应的环境,那么只需要: docker-compose pull && docker-compose up 即可。

原型参考与设计:可交互环境与文档体验

什么是文档?什么是代码?两者没有一个明确的界限,文档是可执行的,代码也是可执行的。不过,从最终的形态上来说,它们都是知识。所以,重点依旧在于如何将这些知识显式化。所以从原型参考上,我们关注于:可交互环境与文档体验设计。

可交互环境:Jupyter & Zeppelin & Nteract

作为交互性编程的业内代表,Jupyter 成为了我们研究的第一个对象。不过,从实现上,我们并没有从它本身的源码上汲取到太多的内容( “代码”)。反而是,围绕于它的生态及竞争对手上,我们看到了一些更有意思的亮点,诸如于 Kotlin Jupyter、Zeppelin、Nteract 等。

  • Nteract 提供了一系列的组件、SDK 来,用来构建交互式应用,诸如于消息通信等等。然而 Nteract ,在设计的时候主要是在 Electron 环境下使用,所以有一些库是无法使用的,如 ZeroMQ —— 设计时是只针对于 Node 环境的。

  • Zeppelin 构建了一个更简单的执行环境(Interpreter),与 Jupyter 的 Kernel API 相比,它可以提供一些更有意思的实现层面的抽象。

  • Kotlin Jupyter 则成了我们现在实现的一个基石。因为它还处于早期试验阶段,我们在构建的过程中,遇到过一系列的依赖包丢失的情况。

回过头来看,我们应该需要再回去看看 Jupyter 的抽象接口,或许能再提供更多的思路。

文档阅读体验与文档工程体验

对于文档体验来说,我一直主张应该关注于两个部分:

  • 文档阅读体验。即向读者提供的文档体验。

  • 文档工程体验。即向工程提供的文档编写体验。(这一部分往往容易被忽视)

对于文档体验来说,除了用于说明性编程的各类架构图,还需要提供各类的定义化能力。其参考来源来源主要是:我们日常的开发中的编程语言的文档编写,详细可以参考《API 库的文档体系支持:主流编程语言的文档设计》与《文档工程体验设计:重塑开发者体验》。

而诸如于 Mermaid、Graphviz 这一类的图即代码(diagram as code),它们在两者提供了一个很好的平衡(只针对于程序员)。

技术评估:DSL、REPL 与编辑器

再回到实现上来,在进行架构工作台的技术评估时,我们关注于架构师编写的 DSL(领域特定语言)语法、REPL(read–eval–print loop) 运行环境以及用于交互的编辑器。其核心关注点是:如何构建更好的开发者体验,一个老生常谈的、难话题。

DSL 语法:Antlr vs Kotlin DSL

在 ArchGuard 中,主要使用的是 Antlr 框架来进行不同语言的语法解析(即 Chapi)。因此,使用 Antlr 来设计一个新的 DSL 及其编译器前端,对于我们而言,并不存在技术上的挑战。甚至于,在以往的经历中,我们也有大型 IDEA 插件架构设计与开发的经历。

然而对于 DSL 来说,我们要考虑的核心因素是:

  • 语法的学习成本。

  • 语法的体验设计。

  • 语法的编辑器/IDE 支持。

如果语法只是是个语言的 API,那它能大大降低学习成本。虽然 Kotlin 有点陌生,但是 Groovy + Gradle 都很熟吧。于是乎,我们采用的方式是基于 Kotlin 语言自带的 Type-safe builders 来构建构建 DSL。官方给的一个参考示例是 Ktor 的路由示例:

  1. routing {

  2.   get("/hello") {

  3.     call.respondText("Hello")

  4.   }

  5. }

除了已经有丰富的 IDE、编辑器的支持之外。在构建架构适应度函数时,也可以使用语言库提供的数学功能,以便于定制各类的计算规则。

架构 REPL:Kotlin Scripting vs Kotlin Jupyter

而对于构建一个交互式架构 REPL 来说,我们需要需要考虑的一个核心点是:构建执行上下文(EvalContext)。即后面运行的代码是依赖于前面代码提供的上下文的,如变量等: val x = 2 * 3,后续就可以使用 x 。

对于我们来说,有两个选择:

  • Kotlin 语言自带的试验性功能:Kotlin Scripting 提供了一种无需事先编译或打包成可执行文件即可将 Kotlin 代码作为脚本执行的技术。因为,对于我们来说,只需要构建我们的 DSL 包,就可以直接执行。

  • Kotlin Jupyter 的实现也是基于 Kotlin Scripting 提供了一系列的 API 封装。

在 REPL 上,起初我们纠结于自己实现,还是基于 Kotlin Jupyter,毕竟 Jupyter 包含了一系列的不需要的代码。后来,发现代码好复杂,虽然都是 MIT 协议,但是我们也不想维护一个不稳定功能的下游版本。

因此,在最后,我们基于 Kotlin Jupyter 的 API 构建了 ArchGuard 的架构 REPL。

探索编辑器:ProseMirror vs Others

对于编辑器来说,考虑的核心点是:组件扩展性。即,可以按需添加用于展示图表的组件,又或者是其它的结果展示相关组件。

在设计上 Jupyter、Zeppelin 采用的是块(Cell)式编辑器,即文档是按的形式切开来的。稍有区别的是 Jupyter 基于 CodeMirror,则 Zeppelin 是基于 Monaco Editor。这种基于块式的编辑功能,有点割裂,提供的交互体验对于纯键盘操作不友好。

于是乎,为了探索更好的文档交互方式,我们陆陆续续参考了一系列的编辑器:CodeMirror、Draft.js、Lexical、ProseMirror 等。ProseMirror 是 CodeMirror 作者的另外一个作品,融合了 Markdown 与传统的 WYSIWYG 编辑器。也就是说:即可以写 Markdown 也可以用富文本的方式(PS:在编写此文时,我使用的 Quake 的底层也是 ProseMirror)。即,它可以同时满足两类人的需求,使用 Markdown 和不使用 Markdown,他们能都从编辑器上获得自己的鼠标(markdown)和键盘(富文本)。

探索完之后,我们发现基于 ProseMirror 的 rich-markdown-editor 能提供所需要的功能。只需要编写一些 ProseMirror 插件,不需要编写大量的 markdown 相关的处理功能。

落地:构建数据通讯与结果呈现

为了验证整个 PoC (Proof of Concept,概念证明)是可行的,接下来就是让数据作为胶水把一切串联起来,构建这样一个完整的端到端示例:

  1. 前端 → REPL。在前端编写 DSL,执行运行,交数据发送给 REPL。

  2. REPL → 前端。REPL 解析数据,将后续的 Action,返回给前端。

  3. 前端 → 后端。前端根据 Action,决定是显示架构图,还是发请求给后端。

  4. 后端 → 前端。后端根据前端的请求,执行对应的命令,再将结果返回给前端。

  5. 前端。前端再根据后端的数据处理。

所以,其实核心的部分只有一个:模型的设计,诸如于:Message 和 Action。

数据传输与处理:Message 模型

在 REPL 服务中,通过 WebSocket 接收到前端的数据之后,就需要将其转换为对应的数据,并返回给前端。如下是在 PoC 中,我们所定义的 Message :

  1. data class Message(

  2.   var id: Int = -1,

  3.   var resultValue: String,

  4.   var className: String = "",

  5.   var msgType: MessageType = MessageType.NONE,

  6.   var content: MessageContent? = null,

  7.   var action: ReactiveAction? = null,

  8. )

在执行前端传入的代码后,会根据不同的执行结果,返回一些后续的 Action 信息(代码中的 ReactiveAction),以及对应的数据(在 action 中)。

REPL:构建执行环境

对于 REPL 来说,我们还需要做的事情有:

  1. 构建 REPL 环境。如添加 ArchGuard DSL 的 jar 包,以及对应的 Kotlin Scripting、Kotlin Jupyter 的 Jar。

  2. 添加 % archguard Magic。添加一个自定义的 LibraryResolver 。

虽然对于 REPL 不熟悉,但是幸好在有 Kotlin Jupyter 的源码作为参考,这个过程并不算太痛苦。虽然过程,也是异常的痛苦:没有可用的文档、环境只为 Jupyter 设计、只能看测试用例。但是,至少还是可以看测试用例 —— 测试是个好东西。

在开发环境下,会加载 Java 运行环境的 classpath (详细见:KotlinReplWrapper):

  1. val property = System.getProperty("java.class.path")

  2. var embeddedClasspath: MutableList<File> = property.split(File.pathSeparator).map(::File).toMutableList()

在运行环境下,则会只引用所需要的 jar 包。两个环境的不一致,也需要在后续探索一下如何进行优化。

编辑器:

在我们落地的过程中,编辑器的实现被分为两部分,一个是编写 ProseMirror 插件,另外一个则是完善 Monaco Editor 的感知。

ProseMirror 插件编写

针对于代码块,编写了 LivingCodeFenceExtension 插件替换了 rich-markdown-editor 中的代码块语法功能,并指向了 Monaco Editor 组件:

  1. <CellEditor

  2.   language={language}

  3.   code={value}

  4.   removeSelf={this.deleteSelf(props)}

  5.   codeChange={this.handleCodeChange}

  6.   context={this.options.context}

  7.   languageChange={this.handleLanguageChange}

  8. />

再围绕于两个编辑器,构建了一系列的交互,如:语言变更、删除代码块、执行代码等。

围绕 Monaco Editor 构建 DSL 开发者体验

Monaco Editor 的完善,主要会围绕于:添加代码高亮、自动填充与智能感知。现在,只完成了基本的功能,还有很多功能需要后续进行探索。

结果展示与图形

对于结果来说,其核心的部分在 ResultDispatcher 上,顾名思义,根据不同的结果来展示不同的展示结果,诸如于:

  1. switch (result.action.actionType) {

  2.   case ActionType.CREATE_REPO:

  3.     return <BackendActionView data={data} actionType={BackendActionType.CreateRepos} />;

  4.   case ActionType.CREATE_SCAN:

  5.     return <BackendActionView data={data} actionType={BackendActionType.CreateScan} />;

  6.   case ActionType.GRAPH:

  7.     return <GraphRender result={result} context={context}/>;

  8. }

而为了更好的呈现技术相关的图形细节,我们在 ArchGuard 中引入了第五个图形库(由于几个图形库的存在,构建变成了一件痛苦的事,大概是最大的技术债了):Mermaid。先前的 Echart.js 可以为我们提供低成本的图形编写,D3.js 则是提供了更灵活的定制能力。

最后,尝试一下部署吧

在我们写完 PoC ,并自信满满地打了 tag 之后,发现自动构建出来的 Docker 镜像是不 work 的,这大半夜的。最后,总结下来,原因有两:

  1. 未配置 Nginx 的 WebSocket 。

  2. Kotlin REPL 依赖于 unpack 环境。

好在,只要再快速修复(quickfix)、打个 tag 就能解决了。事实证明,但凡是想 quickfix,都没法 quickfix。

配置 WebSocket

首先,根据网上的文档,配置好对应的 WebSocket:

  1. location /ascode {

  2.   proxy_pass http://archguard-backend:8080;

  3.   proxy_http_version 1.1;

  4.   proxy_set_header Upgrade $http_upgrade;

  5.   proxy_set_header Connection $connection_upgrade;

  6. }

于是,重构构建镜像之后,发现后端又出问题了,运行的 REPL 环境出错。

配置 Kotlin REPL classpath

如上所述,REPL 在代码中配置的是:

  1. val property = System.getProperty("java.class.path")

  2. var embeddedClasspath: MutableList<File> = property.split(File.pathSeparator).map(::File).toMutableList()

但是,在 Spring 打包后,classpath 只有一个,并且 Kotlin Scripting 会有一系列的问题,这个时候需要 requiresUnpack。详细见:Spring Gradle 插件文档:《Spring Boot Gradle Plugin Reference Guide》,只是对应的解释说明:必须从 fat jars 中解压才能运行的库列表。将每个库指定为具有 和 的 ,它们将在运行时解包。

效果上,就是 Spring 在运行的时候,会将对应的库从 BootJar 中解压出来到临时的目录。

  1. tasks.withType<KotlinCompile> {

  2.   kotlinOptions {

  3.     jvmTarget = "1.8"

  4.     freeCompilerArgs = listOf("-Xjsr305=strict")

  5.   }

  6. }


  7. tasks.withType<BootJar> {

  8.   requiresUnpack("**/kotlin-compiler-*.jar")

  9.   requiresUnpack("**/kotlin-script-*.jar")

  10.   requiresUnpack("**/kotlin-jupyter-*.jar")

  11.   requiresUnpack("**/dsl-*.jar")

  12. }

当然,编码上,一个一个去找太麻烦了,于是就找到临时目录遍历一下:

  1. val tempdir = compiler[0].parent

  2. embeddedClasspath = File(tempdir).walk(FileWalkDirection.BOTTOM_UP).sortedBy { it.isDirectory }.toMutableList()

最后,生成的 classpath 值如下所示:

  1. ikotlin - Classpath used in script: [/tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/kotlin-script-runtime-1.6.21.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/kotlin-jupyter-kernel-0.11.0-89-1.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/dsl-2.0.0-alpha.12.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/kotlin-compiler-embeddable-1.6.21.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/kotlin-jupyter-api-0.11.0-89-1.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/kotlin-jupyter-lib-0.11.0-89-1.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/kotlin-jupyter-shared-compiler-0.11.0-89-1.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/kotlin-jupyter-common-dependencies-0.11.0-89-1.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f/kotlin-script-util-1.6.21.jar, /tmp/app.jar-spring-boot-libs-5edaa25c-496e-4eb0-b7d6-1118a8cc280f]

如此一来,它总算能正确启动了,然后再打一个新的 tag: v2.0.0-alpha.12 。

总结

虽然,我们发布了这个测试版本,但是它依旧有一系列需要改善的地方,诸如于:

  • DSL 体系架构设计。与 Ktor 的 DSL 设计与实现相比,ArchGuard DSL 显得没有任何设计。

  • DSL 语法设计。还未完成开始。

  • 动态前端组件。

  • 更智能的编辑器支持。诸如于智能感知、自动填充等。

所以,欢迎来 ArchGuard 一起构建架构工作台:https://github.com/archguard/archguard 。

快来关注我们~

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
突发!紧!急!刹!车!美国最高法院推翻堕胎法,这只是个开始....基于互联网架构演进, 构建秒杀系统禁止堕胎也许只是一个开始采访了定义开源的那个人,他说:RMS有自闭症,开源不能单一仓库值得尝试的 30 个开源文本编辑器 | Linux 中国架构自治服务:构建数据驱动的架构洞察车祸目击证人开源朗读者:开源新手指南 | Linux 中国热搜第一!北大“最丑”数学老师再度爆红:原来所有天才,都藏着一个秘密!诺基亚勒令一个开源 Linux 手机项目 “NOTKIA” 改名字 | Linux 中国开源许可证的变迁:从Elastic两次变更开源协议说开去一夜爆火的王心凌,狠狠打了湖南台的脸!男人对女人的关注点​从重参数的角度看离散概率分布的构建千江一水--- 回应吴亦凡站台的品牌,已经凉了20090518关于茅台的网友讨论手握1786亿现金,茅台的未来靠分红People Cat-猫三 (3)后疫情时代,儿童不明原因肝炎或许只是个开始为“架构”再建个模:如何用代码描述软件架构?解密NumPy求解梯度的一个关键难点架构即代码:编码下一代企业(应用)架构体系德国恐怕会重新考虑核能源的政策独家专访字节跳动开源委员会:定位“资源中台”,不会为开源设立强KPI企业为何使用开源软件,又为何推动开源软件的发展 | Linux 中国硬核观察 #657 开源固件基金会发布公开信要求英特尔开源 FSP架构工作台:构建企业(应用)架构的数字孪生承德归来话清代内亚帝国的构建(上)庭审证词:希拉里亲自把对川普通俄门的构陷骗局给主流媒体传播!这个开腹探查,让在场的医护人员愤怒不已100块的蔬菜包,也许只是个开始哈佛校门为啥挂个猪头?包含一个惊天秘密!维州女子惊讶发现:澳洲超市卖的鸡蛋,居然还藏着一个秘密!看了辽宁街头那个开车撞母亲的37岁女儿,我才读懂「一无是处」的雷佳音
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。