Redian新闻
>
「图神经网络前沿进展与应用」

「图神经网络前沿进展与应用」

公众号新闻

22年初,图神经网络(GNN)成为互联网圈的流行语,一整年,关于GNN的研究热情日益高涨,其已经成为各大深度学习顶会的研究热点。


GNN处理非结构化数据时的出色能力使其在网络数据分析、推荐系统和自然语言处理等方面都取得了新的突破。

步入23年之际,此文为大家回顾22年在GNN领域最新的研究综述以及研究趋势,我特地选了5篇具有代表性的文章为大家叙述,希望对在该领域想发论文的同学带来一些新思路!


并且今天免费为大家送一波福利
扫描二维码,回复【图神经】
领取
文中5篇论文+42篇ICLR 2023图神经网络论文
全是pdf格式,非常方便,想要的同学千万不要错过!



01

双曲图神经网络


题目:

这篇论文是基于双曲空间的图神经网络,它将图神经网络建立在双曲空间,而不是我们常见的欧式空间中。这篇研究综述主要是通过解释何为双曲空间?以及为什么要在双曲空间中建立图神经网络出发,进而研究在双曲空间中的使用图神经网络有哪些优势、应用以及目前的困境和机遇。


02

基于GNN的图分类

研究论述


题目:

图分类研究综述

图数据广泛存在于现实世界中, 可以自然地表示复合对象及其元素之间的复杂关联,但目前尚缺乏对于图分类研究的完整综述。本论文给出了图分类问题的定义和该领域的挑战; 然后梳理分析了两类图分类方法—基于图相似度计算的图分类方法和基于图神经网络的图分类方法; 接着给出了图分类方法的评价指标、常用数据集和实验结果对比; 最后介绍了图分类常见的实际应用场景, 展望了图分类领域的未来研究方向并对全文进 行总结。


03

联邦图机器学习


题目:

随着社会越来越关注数据隐私,GNN面临着适应这种新常态的需要。这导致了近年来联邦图神经网络研究的迅速发展。本文对联邦图神经网络提出了一种新的3层分类法,以帮助对该领域感兴趣的研究者理解图神经网络和联邦学习是如何相得益彰的,最后文章还从6个方向展望了未来如何构建更鲁棒、动态、高效和可解释的FedGNNs。


04

等变图神经网络


题目:

此论文引出等变图神经网络中的基本概念,并结合在药物研发领域中发表的文献,来分析讨论等变图神经网络的巨大应用价值,作者分析现有方法并将其分为三组,以了解如何表示 GNN 中的消息传递和聚合。还总结了基准以及相关数据集,以方便后期研究方法开发和实验评估。还提供了对未来潜在方向的展望。


05

具有异质性的图

的图神经网络


题目:

该论文首次对异质图的gnn作了一个全面的综述。具体来说,作者提出了一个系统的分类法,该分类法本质上支配着现有的亲异GNN模型,并对其进行了一般性的总结和详细的分析。并且该文总结了主流的异质图的基准,以促进稳健和公平的评价。最后,作者指出了潜在的方向,以推进和激励未来对异质图的研究和应用。



今天免费为大家送一波福利
扫描二维码,回复【图神经】
领取
文中5篇论文+42篇ICLR 2023图神经网络论文
全是pdf格式,非常方便,想要的同学千万不要错过!


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
王啸@北京航空航天大学:图神经网络的“共性”与“个性”Transformer:一种图灵完备的神经网络类器官前沿技术发展与应用专场 | 聚焦类器官模型、芯片等产品应用!2023类器官研讨会论坛二日程出炉!惩罚ICLR 2023 | 清华大学龙明盛组提出通用时间序列神经网络骨干—TimesNet怎样让ChatGPT在其内部训练神经网络?先让它想象自己有4块309010行代码搞定图Transformer,图神经网络框架DGL迎来1.0版本详解神经网络基础部件BN层GNN如何建模时空信息?伦敦玛丽女王大学「时空图神经网络」综述,简明阐述时空图神经网络方法日本啊,日本(十四)中国茶道,日本茶道详解神经网络中反向传播和梯度下降NeurIPS 2022 | ​NAS-Bench-Graph: 图神经网络架构搜索Benchmark中国学者引领图神经网络技术的重要突破,再次刷新了蛋白质性能预测榜单记录业界首个适用于固体系统的神经网络波函数,登上Nature子刊快来学习啦:单细胞空间转录组研究进展与应用Nature展望:慢性肾病研究前沿进展。人工肾脏、基因突变、干细胞培育类器官等均有突破。WSDM 2023 | 学习蒸馏图神经网络Npj Comput. Mater.: 多主元素合金硬度—集成神经网络模型理解并统一14种归因算法,让神经网络具有可解释性【前沿&进展】JMV │ 病毒学国家重点实验室罗敏华团队在人巨细胞病毒致神经损伤机制方面取得新进展​AAAI 2023 | 利用脉冲神经网络扩展动态图表示学习​ICLR 2023 | 标识分支结点,提升图神经网络对环的计数能力怎样让ChatGPT在其内部训练神经网络?突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊要还饶毅一个“清白”DALL-E和Flamingo能相互理解吗?三个预训练SOTA神经网络统一图像和文本AAAI 2023 | DropMessage: 统一图神经网络中的随机删除Npj Comput. Mater.: 水粘度模拟—第一性原理-深度神经网络ICLR 2023 | 漂移感知动态神经网络:基于贝叶斯理论的时间域泛化框架台湾的高营最新综述:等变图神经网络冬至捶丸赋我用ChatGPT写神经网络:一字不改,结果竟然很好用6种卷积神经网络压缩方法ChatGPT写神经网络:一字不改,结果竟然很好用
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。