Redian新闻
>
数据分析报告,【建议】部分该怎么写?

数据分析报告,【建议】部分该怎么写?

公众号新闻

很多做数据的同学都被领导、同事这么吆喝过。然而,什么是策略性思考???往往一听到这种词,就有同学急不可耐地掏出《麦肯锡方法》之类的镇山法宝,或者在网上搜《底层思维》、《核心逻辑》、《分析框架》之类的文章。


结果除了“裂变”“痛点”“颠覆”这些似懂非懂的词以外屁都没有记住,下次写报告还是继续同比、环比、三年比,低了要搞高……

 

咋办?!

 

看个简单的例子,今天HR的小妹妹李芊颖同学被领导骂哭了,因为身为HR,她本人这周的考勤表,长这样:

 

                   

SO,作为数据分析师的同学们,看到这个咋提建议?


一、缺乏策略性的表现


很快,4个做数据分析的同学都给了答案。

 

同学1的答案:

本月共22个工作日,迟到11个工作日,迟到率50%
迟到最多的是第二周,共迟到4天,迟到率80%
迟到最少的是第三周,共迟到1天,迟到率20%

同学2的答案:
迟到次数太多,建议不要迟到。
特别建议周一不要迟到。
 
同学3的答案:
数据来源是……
建模过程是……
经过回归模型分析,预测下个月迟到12天。
建议减少迟到。

同学4,还没给答案:
他正在网上找《员工迟到分析模型》。找了一上午没找到,但是加了五个数据分析讨论群,每个群里都在问:

有没有数据分析高手?

有没有HR行业的数据分析师?

有没有HR方面分析的书,最好PDF版的?

急!可付费!在线等!


问,以上四个同学,哪个能及格?

二、核心的症结


显然,以上四个都不合格哈!
不合格不仅仅因为他们说的都是空话、废话。
更因为他们都犯了同一个问题:就数论数,脱离过程。
 
作为HR经理,想听到的建议是:

建议1:早点出门。

建议2:该打车就打车,省那钱干啥。

建议3:犯了错就认罚,哭有屁用!


作为李芊颖小妹妹,想听到的建议是:

建议1:减少给李芊颖同志的工作量

建议2:由于李芊颖同志住得太远,建议多批几天特例

建议3:上个月李芊颖同志太辛苦,建议免于处罚

看到区别木有,无论是业务方的领导和下属,都不关心具体的数字是什么,更不关心得出数字的模型是什么。他们关心的是可以做什么。做的事情要有依据,能服人就更好了!所谓建议,是业务部门可以做的一个具体动作。这个动作和业务工作流程有密切关系。要能够达到一个大家认可的结果。
 
所以在推导建议的时候,不要单纯在数字上纠结,特别是不要在类似题目的这种“结果数字”上纠结。单纯纠结结果,就会变成“你说我偷懒,我说我没懒”这种小孩磨牙式争吵。要想办法深入到问题发生的过程中,才能找到答案。

三、破题的思路


联系到具体过程,我们就能发现:数据对于量化过程、锁定问题有巨大帮助。
 
比如最简单的一个建议:“早点出门”,听起来是个理,实际上至少存在三个漏洞:

1、早到几点出门不清楚,6点?7点?8点?空口说“早点出门”跟没说一样,需要量化。

2、有没有特殊原因,不清楚。很有可能小姑娘哭得梨花带雨的:“人家前一天加班到半夜,第二天起不来很正常吗!!!要求正装出席,出门前化妆不很正常吗!!!又要人家忙又怪人家,呜呜呜”……不区分具体场景的量化,根本说不服人。

3、特殊原因真的假的,不知道。鬼知道她是真在忙,还是前天出去嗨到半夜去了。
 
更纠结的是,可以直接推导出答案的数据可能是缺失的。你又不是人家男朋友,你怎么知道人家前一天晚上是出去嗨了还是加班了。没有直接证据的情况下,就得一步步来:

先清理出来可用的数据,建立一个基本分析框架

再看怎么挖掘具体场景,排除异常情况


这样才能做到有理有据,以理服人。

四、答题的顺序


第一步,先搞清有什么数据可以用。

通勤这件事,我们其实并不需要那么多隐私信息:
 

第二步,建立基础的分析框架。

基础的分析框架中,不考虑各种意外情况、特殊场景,就看业务最基本的数据逻辑。
比如通勤这个事,只要选好了起点(李芊颖住的小区)终点(公司),打开高德地图都能看到:

距离多远

坐地铁需要多久

坐车需要多少钱,需要多久


有了这些基本信息,就能判断出来:这个距离是否真的太远,从而剔除很多借口/猜疑(如下图):


第三步,讨论可以量化的特例。

不要一看到小姑娘漂亮就想八卦人家的隐私,除了引发争吵外没啥好处。先把能收集到数据的,明面上的问题,比如加班、打车算清楚。这样一来能看到:是不是真的分工不均,委屈别人了;二来也能堵住找借口的嘴(如果确实没加班的话)。


第四步,推导建议。

有了以上的铺垫,推导建议就能有理有据了,而且非常具体(如下图):


五、回到现实工作


当然,上边只是一个逗比的小例子,但是清晰地反映了现实中问题:

业务部门往往处于本位主义思考,提的建议都是对自己有利/自己想表达的,懒得顾及事实,更懒得细致分类。


数据部门往往陷入数字游戏,过于关注数字计算,忽视业务过程,最后就数论数,止于数字。


这样都是不利于得出正确的结论和建议的,最好的做法,就是从过程出发,层层推进,构建起逻辑树。然而这两年算法模型概念广为流传,一下让业务方和数据都以为,只要LR,CNN,XGBOOST呼啦啦往上怼,电脑就能开口说话:“李芊颖呀,我是全知全能的阿尔法大狗子,这个月迟到都怪你自己哦”……于是就惹出更多笑话了。
 
当然,这些都建立在一个基本前提上:你得能分清看到的是结果数据还是过程数据。曾经有个同学问陈老师:“老师,我要如何提升策略性思考能力,你看我们现在明明一切做得很好,可转化率就是上不去,为啥嗯?”
 
答曰:你们现在就是李芊颖呀,嘟着粉红小嘴一脸委屈的:“我明明每天很积极上班了,可咋就是迟到了呢”……想找到答案,光纠结结果没啥用,得深入过程中哦。



 | 接地气的陈老师(ID:gh_abf29df6ada8

作者 | 接地气的陈老师;编辑 | 杂芜

内容仅代表作者独立观点,不代表早读课立场



微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
低阶到高阶的数据分析图表如何做?内含100套数据可视化模板…广告人的年终总结怎么写?建议收藏!墨天轮:2022年中国数据库行业年度分析报告(103页)Pandas:用于数据分析和数据科学的最热门 Python 库 | Linux 中国最全的生物样本数据库(Biobank)收集;及部分公开数据库的大数据分享【期限延长】部分I-539申请人无须拍照按指纹第二次徒步圣路,750公里葡萄牙之路+英国之路:D21~朝圣贝壳求职干货|拼多多 2023秋招补录已开!海归求职:数据(数据分析、数据科学、工程)农小蜂:2022年中国渔业企业竞争格局数据分析报告农小蜂:2023年中国棉花产业数据分析报告【Downtown】部分户型时间免中介费 近Emerson,市中心高级公寓【十大券商一周策略】部分方向过热!行情演绎仍有支撑,短暂降温提供增配良机数据分析师 - 美国新移民的职业重生,掌握数据库的利器世界艺术大师设计的豪宅日本啊,日本(十五)中国茶道,日本茶道农小蜂:2023年中国草鱼产业数据分析报告求职干货 | 拼多多 2023春招已开!海归求职:数据(数据分析、数据科学、工程)详细!7大类数据分析报告写作指南让HR眼前一亮的简历怎么写?环球律师事务所:数据跨境现状调查与分析报告(2023)求职干货 | 京东 2023春招补录已开!海归求职:数据(数据分析、数据科学、工程)2022年全球航天发射活动分析报告美国政府问责局(GAO)发布EB-5报告,建议移民局增加数据收集论文季,综述怎么写?50页+Citespace详尽教程,一步搞定文献综述3万元:黄牛帮你搞定火葬!今日神图 | 拼音原来还能这么写?!数据分析师,如何在数据分析的流程中提供更大的价值?申请商业分析方向,我如何提升数据分析技能与项目经历?氢气有抗癌作用吗?机理是什么?附:大数据分析报告。【喜讯】部分美驻华使领馆签证服务恢复在即!求职干货|没有实习经历,留学生简历该怎么写?智能化转型指数:全球大数据、人工智能和物联网发展分析报告作文怎么写?不妨看看这些初中生的!对话炎凰数据何宁:国产平替之路,Splunk的经历让我们更想做中国自主的大数据分析产品谣言和死亡, 谁先来临
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。