文末送书 | 描绘机密计算技术全景图谱:AI数据安全和隐私保护
胡寅玮,闫守孟,吴源 等 著
新书推荐
🌟今日福利
|关于本书|
本书系统介绍了面向人工智能领域中的数据安全、隐私保护技术和工程实践。本书首先探讨了人工智能领域所面临的各种数据安全和隐私保护的问题及其核心需求,并在此基础上纵览和比较了各种隐私保护计算技术和解决方案的利弊;然后详细阐述了目前比较具有工程实践优势的可信执行环境技术,及其在主流人工智能场景中的工程实践参考案例。此外,本书介绍了关于数据安全和隐私保护的概念、原理、框架及产品,从而帮助读者对机密计算的技术全景有整体的理解。
|关于作者|
胡寅玮,英特尔数据平台事业部中国云计算平台工程部总监。负责为中国及亚太区的云服务商提供云服务器和数据平台的全栈式技术方案,包括CPU定制、服务器平台设计开发、云固件研发、软件性能优化、计算安全及集群阵列调优。
闫守孟,蚂蚁集团研究员,蚂蚁可信基础设施负责人。领导了蚂蚁集团SOFAEnclave(Occlum、HyperEnclave、KubeTEE等)机密计算软件栈、隐私计算加速硬件和可信隐私计算一体机的研发,发起并主导制定了国内外多项可信执行环境和隐私计算一体机标准。有关技术产品已在蚂蚁、阿里巴巴、微软Azure及诸多隐私计算企业得到广泛应用,产生了重要的社会和经济价值。加入蚂蚁之前,在Intel中国研究院从事基础技术研究,多项研究成果应用在Intel软硬件产品中。曾在PLDI、ASPLOS、ATC、ASE等发表多篇顶级会议论文,并拥有30余件专利。在西北工业大学获得计算机应用技术专业博士学位。
吴源,英特尔数据平台事业部资深AI与安全软件工程师。主要负责基于英特尔可信执行环境的人工智能应用和隐私计算。工作重点主要包括联邦学习、深度学习的隐私保护,以及与云计算厂商共同构建基于英特尔可信执行环境的人工智能应用方案。曾参与发表多篇关于人工智能性能优化和可信执行环境的白皮书。
朱运阁,英特尔数据平台事业部软件方案项目组深度学习工程师。研究兴趣和专长主要包括可信执行环境、联邦学习和同态加密。工作重点是基于可信执行环境的数据安全和隐私保护计算。曾参与发表多篇关于可信执行环境安全计算的白皮书,并将解决方案作为最佳实践发表在国内知名社区网站上。
龚奇源,博士,英特尔资深机器学习工程师。2016年博士毕业于东南大学计算机应用专业,师从罗军舟教授,博士期间主要从事数据隐私相关研究。2017年加入英特尔,从事大数据、机器学习和数据隐私相关工作。是大数据+AI开源项目Analytics-Zoo和大数据存储管理开源项目SSM的主要贡献者。
黄晓军,英特尔数据平台事业部资深云计算工程师。长期从事软件架构设计和开发工作,专注于深度学习应用开发与性能优化,以及基于隐私保护机器学习、联邦学习、同态加密和可信执行环境的应用场景落地。曾参与多个数据安全领域开源项目的开发工作。
惠思远,英特尔数据平台事业部软件工程师。主要从事数据安全和隐私保护、人工智能等领域的研究与开发等工作,目前与国内多家云计算厂商合作研发基于英特尔可信执行环境的解决方案。研究兴趣包括可信执行环境、联邦学习和机器学习系统等。
步建林,人工智能与安全软件工程师。主要从事人工智能、高性能计算与隐私保护计算等领域的相关工作。工作重点主要包括AI推理引擎与训练框架的研发与优化,以及基于可信执行环境的隐私保护计算方案的设计与构建。毕业于合肥工业大学微电子科学与工程专业,拥有学士学位。
PaperWeekly携手博文视点送书啦!
点击下方名片关注「AI 求职」
在后台回复暗号“机密计算”
即可参与赢取这本隐私计算重磅新书
奖品数量共计 10 份!
活动截止时间为 4 月 6 日 09:00
微信扫码关注该文公众号作者