作者|Neil Shen 邮箱|[email protected]来源|未来科技力(smartechworld)有关自动驾驶的讨论,伴随着新能源汽车行业的风起云涌一次次被推到台前,它太有吸引力了。试想一下L4级别的自动驾驶能力被应用到乘用车的场景:汽车可以不再有司机、方向盘乃至刹车,所有人都是乘客,人类不再需要关心道路与交通,一切都由算法和机器代劳。这科幻般的前景一度引发市场对自动驾驶的狂热追捧,麦肯锡估计从2010年到2021年,传统车厂和自动驾驶初创企业为此投入了超过1000亿美元。然而烧钱大战或许适用于互联网社交产品、新经济与崇尚规模效益的制造业,但L4级自动驾驶看上去不属于其中任何一种,硅谷创投圈流行的那句名言,fake it until make it 在硬科技面前败下阵来。从2022年开始,自动驾驶行业开始了明显的收缩,融资金额急剧下滑,许多曾经的明星公司,或倒闭(Embark)、或市值大幅跳水(图森未来、Waymo、Mobileye),或干脆被大股东径直解散(Argo AI),而许多幸存下来的公司则对自己的业务方向进行调整,不再将全部资源投入无底洞一般的L4自动驾驶研发,转而切入更务实的辅助驾驶赛道。国内的头部企业中,小马智行去年11月宣布成立了辅助驾驶业务部门,文远知行则和博世达成了合作,将自动驾驶方案应用于L2到L3级别的前装量产中。L4级自动驾驶看上去愈发遥远,有行业机构预测,到2025年,L2级辅助驾驶的汽车渗透率可能超过50%,但L3到L5级的渗透率可能只有1%多一点。乘用车L4级的自动驾驶能力,看上去距离规模化应用越来越遥远。
藏在“角落”里的蓝海
一般人习惯于把自动驾驶和消费级市场,准确地说就是乘用车市场联系起来,这听上去十分合理。乘用车是个巨大的市场,自动驾驶的发展又遇到了新能源转型这个数十年来少有的汽车行业重新洗牌的关键时刻。唯一的问题是,L4级自动驾驶在技术上还不能实现。福特的CFO John Lawler说,大规模盈利的全自动驾驶汽车还需要至少五年。Waymo的首任CEO John Krafcik则说,自动驾驶的挑战性比之火箭发射更甚,甚至“可能根本不会实现。”一方面,自动驾驶的研发需要巨额资金投入。另一方面,无论走渐进式还是跨越式的技术路线,短期内自动驾驶在乘用车领域无法做到绝对安全,哪怕是不考虑成本问题也是如此。因为没有任何一种算法可以穷尽开放道路上的所有情况,并自动进行妥善的应对。彭博社的总结是,自动驾驶之路走完了99%,但剩下的1%是最难的。坦率地说,依照目前的发展水平,自动驾驶,准确地说是辅助驾驶,很多时候更像是一个售卖的噱头,或者一个可供选配的酷炫功能,这一点甚至消费者自己也非常清楚,不会有人把方向盘完全交给机器并撒手不管。但当我们把目光从乘用车市场跳脱出来,在一般消费者和市场看不到的地方,工厂的角落、矿山的深处还有港口的末端,工业级L4级无人驾驶正在落地生根。这里是一片驳杂但需求极其旺盛的蓝海。工业级自动驾驶是在每个细分场景中都有千亿规模的巨大市场,这一点往往为外界所忽略。就拿场间物流来说,其叉车、牵引车等车辆的存量高达270万到280万,如果每辆车按一个驾驶员算,这几乎与整个中国出租车驾驶员数量相当。九曜智能的创始人、CEO史亮给我们算了一笔账,2010年整个中国制造业成本平均下来,一个工人一年大概是7万块钱,十年后,这个成本翻了一倍达到15万。随着人口红利消退,年轻人不愿意再从事劳动强度高、安全性差、职业天花板低的行业——工业驾驶场景正是其中的典型,数据显示2020年中国有超过一半的货车司机平均年龄在40岁以上。高企的成本和招工难的困境同时出现,这直接影响了许多工业流程的正常运转,比如露天矿山。华泰证券研报显示,每位矿用卡车司机的年用工成本达到20万元以上,而矿用宽体车和矿卡都需要配备3-5名司机,这两种车型一年的总用人成本可以达到七八十万乃至百万以上。而根据业内人士透露,操纵驾驶大型矿车的司机很少能做到十年以上,这意味着企业必须不停的寻找成熟的驾驶员,港口的状况同样如此。除此之外,安全还是一把悬在所有人头上的达摩克斯之剑。就在2月22日,内蒙古阿拉善露天矿发生崩塌,造成多人死亡。成本、效率和安全,工业驾驶领域的几项关键要素都在“为人所累”,因此它们对无人驾驶的需求也是最强的。然而人是最活跃的生产要素,这一点却又在工业制造和物流领域体现的尤为充分。如果我们把工业制造领域的链条展开分析,会发现许多领域早已实现了自动化,比如工厂内部的室内物流。经过十多年的发展,中国这个制造业全链路大国有上千家公司提供这种室内物流的自动化设备。可一旦走出室内,自动化水平就陡然降低。这是因为工厂内部的工艺流程是完全固定的,但工厂外的场景,无论是矿山、接驳货物的港口,抑或连接工厂与工厂、工厂与交通干线之间的场间物流网络,它们的运行动线往往随生产流程变化而随时变化,同时还面临许多突发情况,所有这些都需要人的介入来能动地调整。因此,想要切入这个千亿级大市场,自动驾驶必须得满足上面的所有条件,足够安全,足够经济,以及足够智能,不仅是驾驶能力的智能化,还有针对工业场景的自动化能力。此刻我们回头再看L4自动驾驶在消费级领域的表现,恐怕很难对其在工业领域的表现保持乐观,然而事实是,这片蓝海中已经有了不少的先行者,他们不仅技术上满足了上述严格的条件,而且走通了商业化落地的链路。他们是怎么做到的?
面对 to B 客户,没有人会仅交付一套高精尖的技术。尽管最核心的逻辑上,工业级自动驾驶和乘用车自动驾驶是相通的,但在商言商,自动驾驶公司们都在努力给客户交付一套完整的解决方案:一个成熟的L4自动驾驶技术是远远不够的,客户需要的是不仅在技术上,同时也要在场景痛点上满足需求。“技术的门槛相对没有那么高,但对场景的理解能力则千差万别。”一位熟悉工业级自动驾驶的行业人士表示。斯年智驾的第一个项目宁波港大榭码头在正式落地前经过了1000多项港口相关测试,九曜智能则为了满足客户的安全性需求,用8个多月的时间通过了欧盟CE检测和TÜV莱茵无人驾驶安全评估,踏歌智行则基于十余个矿、百余辆矿车、上万天系统的运行数据,最终实现了“虚拟安全员”系统对安全员的替代。你可以把这些理解为扩张前的蓄势。事实上几乎每个人都提到了所谓先发优势,越早进入一个行业,越早洞悉痛点,就能越早累积经验。邬海杰讲述了一次去矿区调研的经历,矿卡司机曾当面提出质疑 :“我们坐在车上,听着发动机的声音和车身的振动,凭借经验就可以察觉到车辆状态可能出现问题,如果矿车无人化了,车辆状态有问题该如何识别和处理?”邬海杰当时的回答是,无人化以后,采集发动机的转速、噪音、振动等各类数据,通过深度学习算法,可以像“老司机”一样识别可能存在的问题,从而实现客户所需的车辆预测性维护。这是一个专家经验数据化、数据智能化的典型过程。史亮同样举了一个例子,当时他们的系统已经在丰田车间上线,有一次车辆在自动运行的过程中突然暂停了七八秒,工程师们从空中看不到任何物体,直到分析地图时才发现,空中悬停了一个十公分的物体,那是两只蜻蜓。随后算法被修改,遇到类似的情况时车辆将会继续运行。张娜把这种状况称之为场景和工程化的积累,因为类似的问题只有在方案落地的过程中不断遇到,相应的算法随之不断进行迭代升级才能解决。在这里,时间是一道迈不过去的坎,而当场景深耕足够到位,蜻蜓已然飞走,下一步才是规模化的复制和泛用。这一步现在已经到来。九曜智能判断2023年为工业级自动驾驶的爆发元年,斯年智驾则想在今年铺设不少于10个码头累计运营300辆无人驾驶车队,而踏歌智行仅去年在手的订单金额就达到了10亿,你可以将它理解为时间的回报。工业级自动驾驶的急速发展同消费级自动驾驶的后退形成了鲜明对比,放到十年前恐怕没有人会预料到这样的结果。2020年,《智能网联汽车技术路线图2.0》发布,对未来15年汽车行业发展做出顶层规划,其中提到2025年在特定场景和限定区域实现高度自动驾驶,这一目标现在看来,即将由深耕工业场景的自动驾驶企业实现。