Redian新闻
>
液态神经网络无人机在未知领域航行时击败了其他人工智能系统

液态神经网络无人机在未知领域航行时击败了其他人工智能系统

公众号新闻

点击蓝字 关注我们

SUBSCRIBE to US


MIT


具有数十亿参数的神经网络为ChatGPT和Dall-E等基于人工智能的日常工具提供了动力,每一个新的大型语言模型(LLM)在大小和复杂性上都优于其前身。与此同时,在麻省理工学院的计算机科学与人工智能实验室(CSAIL),一组研究人员在最近的研究中,展示了一种称为液体神经网络的小型20000参数机器学习系统的效率。


研究人员介绍了一种方法,使无人机能够在复杂和陌生的环境中掌握基于视觉的飞向目标任务。该团队使用了不断适应新数据输入的液体神经网络。他们表明,配备这些设备的无人机在复杂、全新的环境中表现出色,精度很高,甚至超过了最先进的系统。这些系统能够做出决策,将他们带到以前未被探索的森林和城市空间中的目标,并且他们可以在存在额外噪音和其他困难的情况下这样做。


典型的机器学习系统中的神经网络只在训练过程中学习。之后,它们的参数被固定。CSAIL的科学家之一Ramin Hasani解释说,液体神经网络是一类在工作中学习的人工智能系统,即使在经过训练后也是如此。换句话说,他们利用“液体”算法,不断适应新的信息,比如新的环境,就像生物体的大脑一样。Hasani说:“它们是根据生物大脑中神经元和突触的相互作用直接建模的。” 事实上,它们的网络结构受到了被称为C. elegans的生物的神经系统的启发,秀丽隐杆线虫是一种常见于土壤中的微小蠕虫。


Liquid Neural Networks | Ramin Hasani | TEDxMIT,YOUTU.BE

“We can implement a liquid neural network that can drive a car, on a Raspberry Pi”. 

—Ramin Hasani, MIT’s CSAIL


Hasani说,这项实验的目的不仅仅是无人机强大的自主导航。“这是关于测试神经网络作为自主系统部署在我们的社会中时的任务理解能力。”


作为控制无人机的神经网络的训练数据,研究人员使用了一名人类飞行员向目标飞行时收集的无人机镜头。Hasani说:“你会预期系统已经学会了向物体移动。”但是,他没有定义物体是什么,也没有提供任何关于环境的标签。“无人机必须推断出任务是这样的:我想向(物体)移动。”


该团队进行了一系列实验,测试学习的导航技能是如何转移到前所未有的新环境中的。他们在许多现实世界的环境中测试了该系统,包括在森林的不同季节和城市环境中。无人机进行了航程和应力测试,目标被旋转、遮挡、移动等等。液体神经网络是唯一一种可以在没有任何微调的情况下推广到他们从未见过的场景的网络,并且可以无缝可靠地执行这项任务。


液体神经网络在机器人技术中的应用可能会带来更强大的自主导航系统,用于搜救、野生动物监测和运送等。Hasani表示,随着城市密度的增加,智能出行将至关重要,而这些神经网络的小尺寸可能是一个巨大的优势:“我们可以在树莓派上实现一个可以驾驶汽车的液体神经网络。”


超越无人机和机动性


但研究人员认为,液体神经网络可以走得更远,成为与任何类型的时间序列数据处理相关的决策的未来,包括视频和语言处理。由于液体神经网络是序列数据处理引擎,它们可以预测金融和医疗事件。例如,通过处理生命体征,可以开发模型来预测ICU中患者的状态。


除了其他优势外,液体神经网络还提供了可解释性和可解读性。换句话说,他们打开了众所周知的系统决策过程的黑匣子。Hasani说:“如果我(在无人机系统中)只有34个神经元,我就可以去弄清楚每个元素的功能。”这在大规模的深度神经网络中几乎是不可能的。更小尺寸的液体神经网络也大大降低了机器学习模型的计算成本,从而减少了碳足迹。


Hasani和他的同事正在寻找改进液体神经网络的方法。他说:“这篇论文涵盖了一种非常可控和直接的推理能力,但现实世界的交互则需要越来越多复杂的推理问题解答。” 该团队希望设计更复杂的任务,并对液体神经网络进行极限测试,同时也要弄清楚为什么液体神经网络在推理测试中比竞争对手表现得好得多。


微信号|IEEE电气电子工程师

新浪微博|IEEE中国

 · IEEE电气电子工程师学会 · 


科学家创造出世界首个木质晶体管

芝加哥大学研究无需硬件即实现手指触觉感知

类器官智能:大脑计算

10张图总结2023年人工智能状况

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
人工智能立法提上日程:兼顾安全与发展,为人工智能治理打下框架性基础王朔:这个人,我极其仰慕,若下令全民追星,我就追他!CVPR 2023 | 三维场景生成:无需任何神经网络训练,从单个样例生成多样结果人工智能惹祸!美上校爆无人机反戈杀死主人,空军出面否认布鲁姆的认知领域六个层次突发!两架无人机袭击克里姆林宫!俄方:普京未受伤!莫斯科宣布禁飞无人机;泽连斯基出访俄邻国…锐捷618 与你共创网络无限可能俄军防不住无人机袭击克宫?中国多款反无人机系统可以摧毁类似威胁GPT的背后,从命运多舛到颠覆世界,人工神经网络的跌宕80年空客进行无人机自主空中加油试验,采用人工智能,为有人-无人编队打基础Nat. Commun. | 浙江大学郭国骥/韩晓平/王晶晶团队基于单细胞图谱和人工智能神经网络的基因组变异解码框架高群耀博士:人工智能——好的,坏的和未知的只要你用ReLU,就是“浅度学习”:任意ReLU神经网络都有等效3层网络盘点四大技术板块,洞察百项人工智能开源项目——InfoQ研究中心带你探秘中国人工智能开源领域13层网络如何拿下83%精度?极简神经网络架构VanillaNet作者亲自解读SpikeGPT项目原作解读:使用脉冲神经网络的生成式语言模型【动脉严选新品鉴第6期】神平医疗LAVA液态栓塞系统:获神经介入同类产品器械出海“第一张证”姚晨回应张颂文感谢自己一辈子 夸赞其是“戏痴”13层网络拿下83%精度,华为诺亚新型神经网络架构VanillaNet「简约」到极致突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊就连人工智能也建议暂时回避人工智能股票法国害怕中国毁了巴斯德的声誉这一次,维州不仅输给了自己,也输给了其他州……马斯克2023年世界人工智能大会演讲:我相信,中国会有很强的人工智能能力!(附视频&演讲稿)香港理工大学林婉瑜博士实验室招收可信人工智能/图神经网络方向全奖博士生/博士后[打卡] 什么是AI 的“神经网络”?一座房子四口人Npj Comput. Mater.: DFT中的电子密度—等变图神经网络硅谷银行破产,银行如何“引以为戒”?10年后将出现强大得多的人工智能系统,别怕……CVPR 2023 | 神经网络超体?新国立LV lab提出全新网络克隆技术微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型人工智能系列深度报告:计算机视觉行业框架—AI之眼,初启商业飞轮 | 国海全球科技WSDM 2023 | 学习蒸馏图神经网络中国学者引领图神经网络技术的重要突破,再次刷新了蛋白质性能预测榜单记录
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。