Redian新闻
>
IBM:拥抱基础模型与生成式AI,迎接“AI+”新时代

IBM:拥抱基础模型与生成式AI,迎接“AI+”新时代

公众号新闻



撰文 | 魏永明( IBM大中华区混合云及人工智能专家实验室总经理


2023年5月25日,受组委会邀请,我有幸代表IBM参加了在贵阳举办的2023中国国际大数据产业博览会上就“大数据、大算力、大模型”议题展开的高端圆桌对话。随着ChatGPT的问世, 企业对AI大型语言模型产生了极大兴趣,整个产业界都在积极探讨如何能够把握大模型带来的机会,把人工智能技术应用于产业,真正做到“数实相融”,实现创新突破。 
IBM是全球AI技术和应用的重要参与者,见证和引领了AI领域的数次变革。ChatGPT的到来,让我们看到无论是产品还是解决方案,都将从当下“数据为先”的数字化向“AI为先”数字化转变。这意味着未来十年或二十年,领先的公司会把应用AI作为企业数字化的首要任务,这将极大地影响企业的运营模式、与员工合作的模式,与客户和供应商的合作模式。 “AI为先”是当下企业所面临的数字化新格局。  
这一新格局最后会使得产业链重新布局,会使企业的价值链发生改变。AI的能力的快速提升,AI的价值和企业现有的业务流程的紧密整合,推动企业提升其交付的价值、优化价值交付的模式、改变和生态的关系,最终会导致了企业甚至产业的价值链重整。 
为了快速适应这个变化,在价值链的重整中获得独特的竞争优势,我们要重点关注三个重点。 
1、企业首先关心的是人工智能训练的成本和价值如何达到一个完美的平衡。今天,不管是从电费还是计算,成本都非常高,绿色计算不可或缺。 
2、AI大模型要发挥价值,不管是商业价值,还是社会价值作用,关键的一点是AI输出的结果必须是可信的。如果一台手术用人工智能做支撑,一个错误决定带来的后果是不堪设想的。将AI应用于严肃商用环境,无论是驾驶、健康、金融交易,还是大型的生产制造,不可控的错误会造成灾难性的后果,所以,我们需要建立一个机制,把AI从生成到运用的过程管理起来,这就是人工智能的治理,这是第二个非常重要的环节,有了治理的机制,AI可能导致的错误或者合规问题可以及时规避,这个就是我们常说的可信的AI。 
3、人工智能在不同行业、不同业务场景的应用,要考虑将通用与专用这两类人工智能很好地结合起来。企业的核心的竞争力通常是体现其专有的人工智能应用中,专有的人工智能是使用企业的核心数据资产训练出来的,包含企业的核心的业务知识和数据。 
将以上三点放在一起,就为我们提出了一个全新的命题——企业需要构建下一代的平台,一个从算力开始往上管理的全栈式的企业级人工智能平台。这正是目前IBM致力在做的事情,为企业提供这样一个平台,帮助他们在当下数字化的基础之上,将AI应用于企业的核心业务,在提升竞争力的同时,能够很好地应对企业应用大模型和生成式AI所面临的各项挑战——例如,AI训练的算力成本挑战、安全与可信AI的挑战、技能与文化的挑战等等,让企业级AI在商业环境中的应用可以快速普及。 
构建基于特定领域的基础模型将加速企业级的AI应用 
IBM认为,企业应该关注一个更核心也更广泛的概念——基础模型,这个概念是在2021年8月,由斯坦福大学人类中心人工智能研究所 (HAI)下属的基础模型研究中心(CRFM)提出来的。而早在五年前,IBM就开始研究基础模型。 
基础模型是基于一种特定类型的神经网络架构(称为Transformer架构)而构建,为生成相关数据元素的序列(例如句子)而设。Transformer架构能够帮助基础模型理解未标记数据,并将输入转换为输出,从而生成新的内容,这正是生成式人工智能衍生的源头(ChatGPT就是基于Transformer架构)。基础模型在大量未标记的数据上进行训练,可以适应新的场景和用例。尽管基础模型也需要前期大量投资,但每次使用时,它都会摊销 AI 模型构建的初始工作,因为微调基于基础模型构建的其他模型的数据要求要比从头开始构建低得多。这既可以大幅提高投资回报率 (ROI),又可以大大缩短上市时间。 
今天,企业里的数据,无论是传感器、图像、语音还是其他各种不同类型的业务数据,都是有待释放的智能元素。这也从某种程度上回应了IBM为什么要专注于基础模型,以及IBM要建立怎样的基础模型,来帮助企业快速安全地把握大模型和生成式AI所带来的机会。 
IBM 正在构建一组针对多种类型的业务数据进行训练的特定领域的基础模型,包括代码、时间序列数据、表格数据、地理空间数据、半结构化数据和混合模态数据(如文本与图像的组合)。这些基础模型将大大增强从代码创建到药物发现再到网络安全的各种应用,并将极大地影响人们与技术的交互方式,不仅将改变我们完成业务的方式,而且将改变客户对其业务的看法。 
IBM认为,这些基础模型的灵活性和可扩展性将显著加速企业对AI的采用。企业现在不应再把AI视为战术上的“附加组件”,而应该把AI置于其业务的战略核心。事实上,在两年内,IBM预计基础模型将为企业环境中约三分之一的AI提供动力。在IBM将基础模型应用于客户的早期工作中,IBM看到客户的价值实现时间比传统的AI方法快70%。 为此,IBM正致力为需要利用大型语言模型(LLMs)、IT自动化模型、数字劳动力模型、网络安全模型和很多其他专用模型的业务场景开发基础模型,而这些仅仅是一个开始。 
IBM watsonx让 AI成为企业的核心生产力 
未来,企业的AI采用,将会呈现出在多个云上使用多个模型的混合发展趋势。当一家企业决定要采用AI时,通常会面临三个选择:第一,构建自己的模型;第二,使用开源的模型,或者使用IBM或其他厂商的模型,或两者兼用。第三,直接使用IBM的基础模型来获得结果。无论客户和合作伙伴做出何种选择,IBM都可以助力客户进行尝试和实验,并进行模型调优、构建和评估,帮助他们在任何云上都能部署并调整模型。这与IBM围绕混合云和AI的战略相一致。 
过去,在数据为先的发展阶段,聚焦数据与数据生命周期, IBM 提出人工智能阶梯(AI Ladder)的方法,从数据的收集、组织、分析、融合四个步骤为企业规模化部署AI奠定基础。这些工作在一个现代化的人工智能阶梯当中则处于底层,也就是所谓 “+AI”的工作。今天,企业在积极探索如何将AI用于企业的应用,如何对企业的工作流实现智能自动化、甚至替换现有的工作流,最终让AI来完成工作——企业正步入以AI为先的 “AI+” 的全新发展阶段。 
今年5月初,IBM推出针对基础模型和生成式AI新一代企业级AI与数据平台的watsonx,这距离IBM Watson AI参加美国综艺智力比赛节目“危险边缘(Jeopardy)”,已经过去了近13年。IBM watsonx是一套完整的AI开发平台和管理工具,融合业界领先的技术和理念(如基础模型、生成式AI等),更是融合了IBM企业级AI与数据治理的产品与实施经验,是一个可以为企业用户提供先进的机器学习、数据管理和生成式AI功能,提供涵盖数据管理、模型训练、验证、调优、部署、治理与监管的全生命周期的平台和完整工具。IBM watsonx可使帮助企业全面、灵活、便捷地在各个生产和业务环节应用AI,并在整个过程中严格保护企业的私有数据和信息安全,同时满足 AI 治理和监管的要求。IBM watsonx 包含有三个组件:watsonx.ai、watsonx.data 和 watsonx.governance。 
如果说,ChatGPT让人们见识了AI的强大能力,IBM watsonx则把强大的 AI 能力以可信和安全的方式规模化地引入企业,把AI的能力转化成企业的核心生产力。我们相信,watsonx可以扩展和加速领先的企业级AI 对于每个企业的影响。 
扩展与加速AI采用率,为客户和合作伙伴携手共创 
IBM坚信,在一个“AI为先”的商业时代,企业的差异化竞争优势和独特的商业价值,将越来越多地从 AI 模型对于企业独特数据和业务领域知识的适应性当中获得。通过watsonx,IBM为企业提供了一个基于混合云和基础模型的生成式企业级AI与数据的平台,可以帮助客户和合作伙伴打破在采用大模型和生成式AI过程中所面临的技能、算力、成本等难以跨越的鸿沟,借助IBM的技术、行业与生态力量,专注于自身业务,构建独特的竞争优势与商业价值。  
人工智能模型的业务需求越精细,价值创造就会越独特。客户如何在各个应用场景中实现人工智能?IBM已经确定的早期应用场景包括数字劳动力、IT自动化、应用程序现代化、安全性和可持续性等,AI将为企业带来全新的数字生产力水平。客户和合作伙伴可以根据自身的业务战略和痛点,从适合自己的业务场景开启与IBM的基础模型与AI应用的共创之旅。 
例如,在数字劳动力的场景下,借助 AI 和智能自动化,使业务人员个人能够做出更好的决策并更快地交付结果。这将改变人力资源、IT、采购、财务、数据分析师的工作方式,让他们可以专注于业务,大大提高生产力。IT智能自动化能够提高企业系统的性能表现,对系统实现智能自动化,获得新的效率和弹性水平,同时,AIOps解决方案还可以帮助组织快速降低IT成本。在应用程序现代化方面,借助AI,通过DevOps、容器、Kubernetes和微服务可以使现有的应用程序快速实现现代化。在安全性方面,通过将AI引入安全领域,可以扩大可见性范围并提升响应能力,通过机器学习和自然语言处理等AI技术提供快速洞察,以减少每日警报的噪音,大幅缩短响应时间。此外,AI还可以减少排放、浪费和成本,将可持续性嵌入到日常运营中来获取新的效率,帮助组织做好准备应对可能扰乱业务的气候风险,更容易地评估他们自己对环境的影响,并满足合规性要求。 
不仅如此,IBM还携手合作伙伴,扩展企业的AI采用率。例如,IBM将Watson Assistant和Watson Discovery嵌入SAP 解决方案,提供AI驱动的洞察和自动化,提升客户体验;将Watson Discovery和自然语言软件库嵌入Adobe Acrobat,帮助其用户更好地处理PDF文件;借助 IBM Watson Order,麦当劳实现了“来得速”服务的自动化,使其员工专注于食品外送和顾客服务;Watson Code Assistant 和 Red Hat Ansible 共同实现IT自动化,优化红帽社区开发者体验;在通用汽车的车载应用中内嵌红帽技术栈,并基于红帽OpenShift平台优化其智能车载应用的AI工作负载。 
回到根本,应对算力挑战 
在数博会的“大数据、大算力、大模型”的圆桌对话中,算力挑战是大家非常关注的议题。回到根本,我认为,应对算力挑战,除了基础设施的硬件层面,软件也非常重要:怎样把算力抽象起来,数据怎样能够低成本的治理,计算出来的结果如何能与企业及用户一端现有的系统整合起来,算力如何来调度,这里面包含了很多软件技术。因此,当下技术的研发,不光是在基础架构层面,从平台一直到应用,技术提供商都必须关注,为企业客户提供全栈式的产品和服务。这也是今天IBM在中国为企业客户提供人工智能大数据和数字化转型服务非常重要的一点。 
这是一个颠覆性的时代,未来几年我们的产业将发生很多颠覆性的变化。处于这个变局当中,每个企业都需要具备应用人工智能、利用数字化技术的能力;作为个人,我们也许要开始重新设计自己的职业,重新打造自己未来开展日常工作的能力,这一点非常重要。面对新的人工智能信息化时代,我们每个人都要与时俱进作出改变,追赶技术。与大家共勉!

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
谷歌AI音乐工具开始公测,英国启动对AI基础模型初步审查,网络表演市场营收近2000亿元顺序决策与基础模型如何交叉互惠?谷歌、伯克利等探讨更多可能ACL 2023 | 持续进化中的语言基础模型大模型与生成式AI黄金时代,每一个应用都会被刷新重写 | 榕汇走进微软来了!终于来了,IBM CEO说,公司凡是AI能做的,一律不再招人深度学习机器视觉与生成式AI 「云集|职挂云帆」ML学习小组浙大滨江院Om中心发布首个大规模图文配对遥感数据集,让通用基础模型也能服务遥感领域埃森哲:生成式人工智能:人人可用的新时代剑桥华人团队开源PandaGPT:首个横扫「六模态」的大型基础模型新时代•新财富•新价值 招商银行携手富国基金等合作伙伴探讨把握新时代发展趋势生成式AI浪潮,将革新哪些产业的创造力与生产力? | NVIDIA 初创加速计划 X 榕汇员工总数13万,最多要裁员5.5万!又有大型企业宣布:拥抱AI上交大&上海AI lab研发胸部X-ray疾病诊断基础模型,成果入选Nature子刊重磅电话会议!【广发策略戴康】新投资范式:拥抱确定性!—23年中期策略展望(PPT演示)ICML 2023 | 基于模块化思想,阿里达摩院提出多模态基础模型mPLUG-2Prompt Sapper:基础模型的灵魂伴侣,AI服务的创新工场罗地亚奥帕蒂亚(Opatija),海景浏览戴康:新投资范式:拥抱确定性!—2023年中期策略展望大运成都:拥抱世界,成就梦想中国AI大模型地图发布;GPT研究烧掉30亿美金;美团正自研基础模型丨AIGC大事日报双林奇案录第三部之天禅寺:第二十一节OpenAI劲敌融资13亿美元;中国团队推首颗AI全自动设计CPU;全球首个医疗多模态基础模型群发布丨AIGC大事日报长篇小说《如絮》第一百一十四章 旧金山-2004年 失眠7 Papers & Radios | OpenAI用GPT-4解释GPT-2;Meta开源多感官基础模型AGIEval:准确考察基础模型类人能力的基准评估工具联合国预测中国今年GDP增长率为5.3%;生成式AI开启人工智能的新时代|绿研院半月报基础模型定义视觉新时代:综述与展望乘着思想的翅膀 - 人类何时被AI凌驾《世上另一个我》:拥抱自我,从这三次和解开始冷却的不止季节(48)— 致富之路基础模型自监督预训练的数据之谜:大量数据究竟是福还是祸?AMD创新引领下一代数据中心与生成式AI“伶荔(Linly)”项目团队全新发布中文Falcon基础模型​海信视像科技总裁李炜:拥抱“全场景显示”,掌握画质“制空权”超越YOLOv8!YOLO-NAS:下一代目标检测基础模型清华人工智能研究院「基础模型研究中心」成立!唐杰任研究中心主任,孙茂松任首席科学家
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。