Redian新闻
>
上交大&上海AI lab研发胸部X-ray疾病诊断基础模型,成果入选Nature子刊

上交大&上海AI lab研发胸部X-ray疾病诊断基础模型,成果入选Nature子刊

公众号新闻

机器之心专栏

专栏:FM4Medicine

上海交通大学与上海人工智能实验室联合团队聚焦医学人工智能,提出了首个基于医学领域知识增强的 Chest X-ray 的基础模型。

近年来于大数据预训练的多模态基础模型 (Foundation Model) 在自然语言理解和视觉感知方面展现出了前所未有的进展,在各领域中受到了广泛关注。在医疗领域中,由于其任务对领域专业知识的高度依赖和其本身细粒度的特征,通用基础模型在医疗领域的应用十分有限。因此,如何将医疗知识注入模型,提高基础模型在具体诊疗任务上的准确度与可靠性,是当前医学人工智能研究领域的热点。

在此背景之下,上海交通大学与上海人工智能实验室联合团队探索了基于医学知识增强的基础模型预训练方法,发布了首个胸部 X-ray 的基础模型,即 KAD(Knowledge-enhanced Auto Diagnosis Model)。该模型通过在大规模医学影像与放射报告数据进行预训练,通过文本编码器对高质量医疗知识图谱进行隐空间嵌入,利用视觉 - 语言模型联合训练实现了知识增强的表征学习。在不需要任何额外标注情况下,KAD 模型即可直接应用于任意胸片相关疾病的诊断,为开发人工智能辅助诊断的基础模型提供了一条切实可行的技术路线。

  • KAD 具有零样本(zero-shot)诊断能力,无需下游任务微调,展现出与专业医生相当的精度;
  • KAD 具有开放疾病诊断(open-set diagosis)能力,可应用于胸片相关的任意疾病诊断;
  • KAD 具有疾病定位能力,为模型预测提供可解释性。

研究论文《Knowledge-enhanced Visual-Language Pre-training on Chest Radiology Images》已被知名国际期刊《自然 - 通讯》(Nature Communications)接收。论文作者为张小嫚、吴超逸、张娅教授,谢伟迪教授(通讯),王延峰教授(通讯)。


  • 论文链接:https://arxiv.org/pdf/2302.14042.pdf
  • 代码模型链接:https://github.com/xiaoman-zhang/KAD

模型介绍

KAD 模型的核心是利用医学先验知识引导基础模型预训练,第一阶段,该研究利用医学知识图谱训练一个文本知识编码器,对医学知识库在隐空间进行建模;第二阶段,该研究提出放射报告中提取医学实体和实体间关系,借助已训练的知识编码器来指导图像与文本对的视觉表征学习,最终实现了知识增强的模型预训练。具体流程如图 1 所示。

图 1:KAD 的模型架构

知识编码器

知识编码器的核心是在特征空间隐式地建立医学实体之间的关系。具体来说,该研究将统一医学语言系统 (Unified Medical Language System,UMLS) 作为医学知识库,如图 1a 所示;通过对比学习训练文本编码器,将医学知识注入模型,如图 1b 所示。

知识引导的视觉表征学习

知识编码器训练完成后,模型在文本特征空间已经建立了医学实体之间的关系,即可用于引导视觉表征学习。具体来说,如图 1c 所示,基于胸片 - 报告对的数据,首先进行实体提取,得到常见疾病的集合及其标签,该研究尝试了三种方法:基于 UMLS 启发式规则的实体提取、基于报告结构化工具 RadGraph 的实体提取以及基于 ChatGPT 的实体提取;在模型层面,该研究提出了基于 Transformer 架构的疾病查询网络(Disease Query Networks),以疾病名称作为查询 (query) 输入,关注 (attend) 视觉特征以获得模型预测结果;在模型训练过程中,该研究联合优化图像 - 文本对比学习和疾病查询网络预测的多标签分类损失。

经过上述两阶段的训练,在模型使用阶段,如图 1d 所示,给定一张图像以及查询的疾病名称,分别输入图像编码器和知识编码器,经过疾病查询网络,即可得到查询疾病的预测。同时可以通过疾病查询网络得到注意力图对病灶进行定位,增强模型的可解释性。

实验结果

研究团队将仅在 MIMIC-CXR [1] 上使用图像和报告预训练的 KAD 模型,在多个具有不同数据分布的公开数据集上进行了系统性评测,包括 CheXpert [2], PadChest [3], NIH ChestX-ray [4] 和 CheXDet10 [5]。MIMIC-CXR 数据收集于贝斯以色列女执事医疗中心(Beth Israel Deaconess Medical Center,BIDMC)是,CheXpert 数据收集于美国斯坦福医院(Stanford Hospital),PadChest 数据收集于西班牙圣胡医院(San Juan Hospital),NIH ChestX-ray 和 CheXDet10 数据来自于美国国立卫生研究院(National Institutes of Health)临床 PACS 数据库。

(1) KAD 零样本诊断能力与专业放射科医生精度相当

如图 2 所示,该研究将预训练的 KAD 模型在 CheXpert 数据上进行评测,在其中的五类疾病诊断任务与放射科医生进行了比较,图中 Radiologists 表示三名放射科医生的平均结果。KAD 在五类疾病诊断任务上的平均 MCC 超过了 Radiologists,且在其中三类疾病的诊断结果显著优于放射科医生,肺不张 atelectasis (KAD 0.613 (95% CI 0.567, 0.659) vs. Radiologists 0.548);肺水肿 edema (KAD 0.666 (95% CI 0.608, 0.724) vs. Radiologists 0.507);胸腔积液 pleural effusion (KAD 0.702 (95% CI 0.653, 0.751) vs. Radiologists 0.548)。该结果证实了基于知识增强的模型预训练的有效性。

图 2:KAD 在 CheXpert 数据集上与基线模型以及放射科医生的比较

(2) KAD 零样本诊断能力与全监督模型相当,支持开放集疾病诊断

如图 3a 所示,在 PadChest 上的零样本诊断性能大幅度超越此前所有多模态预训练模型(例如 Microsoft 发布的 BioVIL [6],Stanford 发布的 CheXzero [7]),与全监督模型 (CheXNet [8]) 相当。此外,全监督的模型的应用范围受限于封闭的训练类别集合,而 KAD 可以支持任意的疾病输入,在 PadChest 的 177 个未见类别的测试中,有 31 类 AUC 达到 0.900 以上,111 类 AUC 达到 0.700 以上,如图 3b 所示。

图 3:KAD 在 PadChest 数据集上与基线模型的比较

(3) KAD 具有疾病定位能力,为模型预测提供可解释性

除了自动诊断能力,可解释性在人工智能辅助医疗的作用同样关键,能够有效帮助临床医生理解人工智能算法的判断依据。在 ChestXDet10 数据集上对 KAD 的定位能力进行了定量分析与定性分析。如图 4 所示,KAD 的定位能力显著优于基线模型。图 5 中,红色方框为放射科医生提供的标注,高亮区域为模型的热力图,从中可以看出模型所关注的区域往往能与医生标注区域对应上,随着输入图像的分辨率增加,模型的定位能力也显著增强。

需要强调 这是模型设计的优势,是在无需人工病灶区域标注情况下获得的副产品。

图 4: KAD 在 ChestXDet10 数据集上与基线模型的比较

图 5:KAD 的定位结果可视化

总结

医疗领域的专业性,导致通用基础模型在真实临床诊疗场景下的应用十分受限。KAD 模型的提出为基于知识增强的基础模型预训练提供了切实可行的解决方案。KAD 的训练框架只需要影像 - 报告数据,不依赖于人工注释,在下游胸部 X-ray 诊断任务上,无需任何监督微调,即达到与专业放射科医生相当的精度;支持开放集疾病诊断任务,同时以注意力图形式提供对病灶的位置定位,增强模型的可解释性。值得注意的是,该研究提出的基于知识增强的表征学习方法不局限于胸部 X-ray,期待其能够进一步迁移到医疗中不同的器官、模态上,促进医疗基础模型在临床的应用和落地。

如果您对医学基础模型研究感兴趣,欢迎加入FM4Medicine (Foundation Model for Medicine)专栏机器之心读者交流群。


References
[1] Johnson, A.E., Pollard, T.J., Berkowitz, S.J., Greenbaum, N.R., Lungren, M.P., Deng, C.-y., Mark, R.G., Horng, S.: Mimic-cxr, a de-identified publicly available database of chest radiographs with free-text reports. Scientific data 6 (1), 1–8 (2019)
[2] Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpanskaya, K., et al.: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)
[3] Bustos, A., Pertusa, A., Salinas, J.-M., de la Iglesia-Vay´a, M.: Padchest: A large chest x-ray image dataset with multi-label annotated reports. Medical image analysis 66, 101797 (2020)
[4] Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)
[5] Liu, J., Lian, J., Yu, Y.: ChestX-Det10: Chest X-ray Dataset on Detection of Thoracic Abnormalities (2020)
[6] Boecking, B., Usuyama, N., Bannur, S., Castro, D.C., Schwaighofer, A., Hyland, S., Wetscherek, M., Naumann, T., Nori, A., Alvarez-Valle, J., et al.: Making the most of text semantics to improve biomedical visionlanguage processing. In: European Conference on Computer Vision, pp. 1–21 (2022).
[7] Tiu, E., Talius, E., Patel, P., Langlotz, C.P., Ng, A.Y., Rajpurkar, P.: Expertlevel detection of pathologies from unannotated chest x-ray images via selfsupervised learning. Nature Biomedical Engineering, 1–8 (2022).
[8] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K. and Lungren, M.P., 2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.

© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
【君在我心】之【云深情也深 】& 【今夜想起你 】& 【爱在我心中】Nature子刊|郭非凡团队发现缓激肽促进褐色脂肪组织产热和白色脂肪米色化的作用与机制Nature子刊:首次证实,年轻血液能够延缓衰老,还能延长寿命、促进健康《爱的月光》&《初见》【美国春天母亲节献礼4女高音三部曲 舞台艺术节255】春天原创现场舞台:《妈妈是天使》&《游子吟:三春晖》&《春天摇篮》Nature子刊 | 闫创业课题组揭示GABA转运蛋白GAT1的底物转运机制和药物抑制机理《终结者5》lite版!华人博士生用电控制基因表达,成果登上Nature子刊Nature子刊:桂林医学院陈琍团队发现新型骨和骨髓干细胞分泌因子调控骨重塑和骨生成规则制定者与普通劳动者查尔斯加冕和其他咀外文嚼汉字(236)“加冕”、“戴冠”,coronation【美国春天母亲节5年回顾原创三部曲六一钢琴节】我为柳宗元《小石潭记》作曲 &《让我们唱在夏天里》&《卖火柴的小女孩》真人nature子刊|清华大学闫创业课题组揭示GABA转运蛋白GAT1的底物转运机制和药物抑制机理义工随笔:前传好人若蓝脂肪也分好坏!Nature子刊:美国斯坦福大学最新研究揭示膳食脂肪酸延长寿命的机制利用AI发现3种Senolytics化合物,James Collins团队新成果登Nature子刊,已落地公司推进抗衰老研究Nature子刊:解决皮肤衰老,保持“冻龄”的相关机制找到了!一个字都没写,也能发24分Nature子刊?审稿人: 这是我审起来最享受的文章!1篇Nature和两篇Nature子刊揭示血液因子PF4让大脑返老还童之谜AI 助力胃肠道疾病诊断,或比人工更快更准?AI学语言与人脑极为相似!新研究证明:语言并非人类与生特有的能力,机器也能学丨Nature子刊【美国春天母亲节5原创钢琴三部曲 “粉衣蓝裙”不表白庆六一艺术节】《美丽夏天温柔的雨》&《爱的童话》&《雷雨之后》Cell子刊 | 靶向细菌外囊泡是疾病诊断和治疗的新兴途径!Nature子刊:晒太阳会促进男性分泌饥饿素,刺激进食和增重,而女性不受影响颜宁新论文突然上线Nature子刊:结构是AI无能为力的...逆转衰老将成现实?Nature子刊重磅发现:低剂量注射长寿因子Klotho可有效改善认知功能Nature子刊|威大华人团队全新多模态数据分析及生成方法JAMIE,大幅提升细胞类型、功能预测能力减肥总反弹?原因在大脑!Nature子刊:人群试验显示,肥胖能改变大脑神经元,且不可逆!减肥反弹原因找到啦!Nature子刊:肥胖会伤脑,破坏大脑对营养物质的响应且不可逆!Nature子刊 | 中山大学梁欢欢/刘迎芳揭示流感聚合酶在转录和复制周期之间平稳切换的机理Holiday Special 七月上 望七月 ~~ poem & song by 盈盈 & APNature子刊 | 上海交通大学杨程德等发现新冠病毒诱导血小板活化和血栓形成的潜在机理Nature子刊 | 第一款“生物照相机”,DNA就是未来的海量“U盘”颜宁新论文突然上线Nature子刊:结构是AI无能为力的新发现!Nature子刊揭示蝙蝠的病毒多样性和潜在传染风险超50万中国人数据来了!Nature子刊:饮酒与61种疾病相关,有这四种饮酒习惯的尤其注意!分不清梦境和现实?只因大脑想象与视觉功能由同一区域负责 | Nature子刊Nature子刊丨揭示能反映AD病理改变的更优生物标志:CSF中tau T217和T205处的磷酸化占比Nature子刊重磅!北大团队超50万人研究:遵循这5种健康生活方式,寿命延长6.3年类器官鼻祖Hans Clevers 团队Nature子刊最新研究:利用纤维板层癌突变的类器官揭示肝细胞转分化
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。