Redian新闻
>
CVPR最佳论文:大模型成就端到端自动驾驶|焦点分析

CVPR最佳论文:大模型成就端到端自动驾驶|焦点分析

公众号新闻

部分企业已经在行动。


李安琪

编辑李勤

来源|启动PowerOn(ID:EV36kr)

封面来源视觉中国

与自动驾驶相关文章,首次获得全球顶级计算机视觉会议CVPR的最佳论文。

6月22日,全球顶级计算机视觉会议CVPR 2023公布了最佳论文等奖项。一篇名为《Planning-oriented Autonomous Driving》(以路径规划为导向的自动驾驶)论文,成功从9155篇投稿、2359篇接收论文、12篇入选最佳论文候选名单中脱颖而出。

这也是近十年来,CVPR会议上第一篇以中国学术机构作为第一单位的最佳论文。该论文由上海人工智能实验室、武汉大学及商汤科技联合完成。

CVPR在学术界及产业界的影响力毋庸置疑,与ICCV、ECCV并列为计算机视觉领域三大顶级会议。全球最聪明的头脑汇聚于此,特斯拉也连续几年在CVPR上公布其自动驾驶技术最新进展。

今年的竞争相当激烈。据公开信息,今年12篇入选最佳论文候选名单机构,不仅有谷歌、Stability AI等人工智能领域顶尖企业,也有上海人工智能实验室、斯坦福大学、康奈尔大学、香港中文大学、香港科技大学、南洋理工大学等研究机构及高校。

而上海人工智能实验室、武汉大学及商汤科技联合获奖的关键在于,提出了一个感知决策一体化的自动驾驶通用大模型UniAD。

大会官方组委会认为,论文提出的端到端感知决策一体框架,融合了多任务联合学习的新范式,使得进行更有效的信息交换,协调感知预测决策,以进一步提升路径规划能力。

这证明了大模型与自动驾驶产业结合的潜力。今年初,ChatGPT的爆火,让机器学习与理解人类语言的能力有了本质飞跃。而大模型,也有望为自动驾驶产业落地指出更清晰的方向。

端到端的自动驾驶大模型UniAD

论文指出,随着深度学习发展,自动驾驶算法被组装成一系列任务,包括目标检测与跟踪、在线建图、轨迹预测、占据栅格预测等子任务。

基于这些子任务,行业有着多种自动驾驶系统框架设计:模块化设计,多任务框架,但两种方案都面临着累积错误或任务协调不足的困扰。

比如自动驾驶公司Waymo、Cruise采用的模块化设计方案,每个独立的模块负责单独的子任务。这种方案具备简化研发团队分工,便于问题回溯,易于调试迭代等优点。但由于将不同任务解耦,各个模块相对于最终的驾驶规划目标存在信息损失问题,且多个模块间优化目标不一致,误差会在模块间传递。

论文认为,多任务框架是更优雅的一种设计方案,代表性企业有美国特斯拉、中国小鹏汽车等。方案中不同任务使用同一个特征提取器,具备便于任务拓展、节省计算资源等优点。但不同任务之间仍存在预测不一致、表征冲突的问题。

a为模块化设计、b为多任务框架、c1/c2为两种端到端方案、c3为UniAD方案示意  图源论文

相比之下,端到端自动驾驶方案将感知、预测和规划所有节点视为一个整体,但现有的两种端到端方案也还面临挑战。

一种简单的方式直接以传感器信号作为输入、以轨迹/控制作为输出,能够在仿真中取得较好结果,但缺乏可解释性与实际应用安全性,尤其是在复杂的城市道路场景。

另一种方案是,对模型进行显式设计,将整个架构分为感知-预测-规划模块,使其具有部分中间结果表达。但这种方式面临检测结果在模块间不可微导致无法端到端优化,稠密BEV预测时长有限,过去-未来、物体-场景等多维度信息难以高效利用等困难。

因此,本篇论文提出了一个端到端方案Unified Autonomous Driving,即UniAD。上海人工智能实验室指出,UniAD能够成功解决不同任务的融合难的问题,从而实现多任务和高性能的关键在于以下两点。

一是多组查询向量的全Transformer 模型:UniAD利用多组 query 实现了全栈 Transformer 的端到端模型,可以从具体 Transformer 的输入输出感受到信息融合。二是以最终“规划”为目标,全部模块通过输出特定的特征来帮助实现最终的目标“规划”。

自动驾驶端到端架构 (UniAD) 的流程  图源论文

从论文来看,UniAD 将感知、预测、规划等三大类主任务、六小类子任务(目标检测、目标跟踪、场景建图、轨迹预测、栅格预测和路径规划)整合到统一的端到端网络框架下。

具体来说,将一系列多摄像头图像输入特征提取器,并通过 BEVFormer 转换为统一的鸟瞰图(BEV)。这部分可以快速替换为其他BEV模型,具有较好可拓展性。

在感知环节中,UniAD的目标检测与跟踪模块可以实现对动态元素的特征提取、帧间物体跟踪;在线建图模块实现了对静态物体的特征提取、实例级地图预测;

在预测模块,UniAD可以实现动静态元素交互与长时序轨迹预测;占据栅格预测模块实现了短时序全场景BEV、实例级预测;

在规划模块,UniAD实现基于自车query的轨迹预测和基于占据栅格的碰撞优化。

论文表示,UniAD 的培训分两个阶段:首先联合训练感知部分,即目标跟踪和建图模块,这将持续几个阶段(在实验中为 6个阶段),然后使用所有感知、预测和规划模块端到端地训练模型20个阶段。

从结果来看,论文表示,在 nuScenes 真实场景数据集下,所有任务均达到领域最佳性能(State-of-the-art),尤其是预测和规划效果远超之前最好方案。其中,多目标跟踪准确率超越SOTA 20%,车道线预测准确率提升30%,预测运动位移和规划的误差则分别降低了38%和28%。

在晴天直行场景中,UniAD 可以感知左前方等待的黑色车辆,预测其未来轨迹(即将左转驶入自车的车道),并立即减速以进行避让,待黑车驶离后再恢复正常速度直行 图源上海人工智能实验室

在雨天转弯场景中,即便面对视野干扰较大且场景复杂的十字路口,UniAD 能通过分割模块生成十字路口的整体道路结构(如右侧 BEV图中的绿色分割结果所示),并完成大幅度的左转 图源上海人工智能实验室

从论文到产业还要多久?

当然,从前瞻学术论文到产业跟进、技术大规模惠普,所需要的时间并不短。

以当下被行业火热讨论的BEV为例。2021年特斯拉首次基于Transformer将摄像头2D图像拼接转化成3D图景,生成鸟瞰图 “Bird's Eye View”,简称“BEV”。这也是大模型在自动驾驶感知环节的应用。

两年时间过去,当下国内企业虽已纷纷跟进,但仅有少数几家能拿出先期成果。

而UniAD大模型是更为庞大的,涉及感知、预测、规划的复杂系统工程,其中的技术优化与工程化落地只会比BEV更艰难。

论文本身也指出,协调这样一个具有多个任务的综合系统并非易事,需要大量的计算能力,尤其是经过时间历史训练的计算能力。如何为轻量级部署设计和管理系统值得未来探索。

作者之一、上海人工智能实验室青年科学家李弘扬博士表示,UniAD提供了全套关键自动驾驶任务配置,其充分的可解释性、安全性、与多模块的可持续迭代性,是目前为止最具希望实际部署的端到端模型。这套基于视觉的全栈自动驾驶框架,据初步测算,每年节省激光雷达与标注成本可达千万级。

部分玩家已经在行动。据36氪了解,小鹏和理想汽车都在筹备研发全栈端到端自动驾驶方案。“目前效果还不太好,但潜力很大。”有内部人士透露。

总而言之,新的技术的种子已经播下,行业新一轮竞赛也可能已经开始。接下来的,就看谁能给出更肥沃的土壤与更恒久的耐心。

文章参考:
1. 《Planning-oriented Autonomous Driving》  
2.《AIR学术|上海人工智能实验室李弘扬、陈立:端到端自动驾驶算法设计思考》

3.《上海AI实验室联合团队获CVPR最佳论文奖 | CVPR 2023》

36氪旗下电动汽车公众号

👇🏻 真诚推荐你关注 👇🏻

来个“分享、点赞、在看”👇

CVPR最佳论文

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
国产大模型,也分「武当」和「少林」|焦点分析大模型无法一步到位?还得是「熟悉的配方」|焦点分析《合金弹头》刺穿高墙,腾讯与字节把手牵得更紧|焦点分析大厂掰苞米:大模型进,自动驾驶退如何应对偷渡客问题(一)三千元的Prada面霜,卖不动的高端美妆|焦点分析CVPR 2023最佳论文候选出炉!武大、港中文、商汤等国内机构多篇入选这个世界总是有人让你动容中国团队自动驾驶大模型斩获CVPR最佳论文;Stability AI推出新文生图模型;京东大模型即将发布丨AIGC大事日报CVPR 2023最佳论文候选!真实高精3D物体数据集OmniObject3D首个感知决策一体化自动驾驶通用大模型!商汤联合团队获CVPR 2023最佳论文什么样的方案,夺得了CVPR自动驾驶挑战赛冠军?CVPR最佳论文颁给自动驾驶大模型!中国团队第一单位,近10年三大视觉顶会首例【附PDF】整理了114篇医疗论文,含cvpr2023医疗论文+经典论文+医疗论文综述等CVPR上的新顶流:BEV自动驾驶感知新范式对标特斯拉,大模型成为自动驾驶又一「强心针」?座舱交互/自动驾驶开发/智能驾驶辅助训练...AIGC和大模型席卷智能网联汽车第一共和银行起伏叹上海AI实验室联合团队获CVPR最佳论文奖 | CVPR 2023卖吹风机的戴森,进军储能|焦点分析结合亲和力提高了 28.7 倍,基于端到端贝叶斯语言模型的方法设计大型、多样化的高亲和力抗体库CVPR 2023|All in UniSim:统一的自动驾驶仿真平台抖音生活服务首次亮肌肉:GMV增长7倍,外卖地位提升|焦点分析CVPR 2023最佳论文候选出炉,12篇上榜!武大、港中文、商汤等国内机构多篇入选「喜运达」完成数千万元Pre-A轮融资,搭建全链路端到端的跨境物流网络|早起看早期双林奇案录第三部之长命锁: 第九节CVPR 2023论文总结!CV最热领域颁给多模态、扩散模型陈怡然教授论文获2024 IEEE优秀论文奖!STN-iCNN:端到端的人脸解析框架近十年首次,国内机构上海AI Lab、武大、商汤研究获CVPR 2023最佳论文不和宁德时代比亚迪拼刺刀,国轩高科加速「外卷」|焦点分析「喜运达」完成数千万元Pre-A轮融资,搭建全链路端到端的跨境物流网络|36氪首发兄弟狗与狗兄弟CVPR'23 最佳论文候选 | 采样提速256倍!蒸馏扩散模型生成图像质量媲美教师模型近三年CV顶会上的自动驾驶点云论文合集AWE观察:洗地机新品牌涌现,这个赛道未火先卷|焦点分析
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。