Redian新闻
>
炸裂!微软新作LongNet:将Transformer扩展到10亿个Tokens

炸裂!微软新作LongNet:将Transformer扩展到10亿个Tokens

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【目标检测和Transformer】交流群

转载自:机器之心

已经扩展到了10亿token,未来能否将整个互联网作为一个序列处理?
当大家不断升级迭代自家大模型的时候,LLM(大语言模型)对上下文窗口的处理能力,也成为一个重要评估指标。
比如明星大模型 GPT-4 支持 32k token,相当于 50 页的文字;OpenAI 前成员创立的 Anthropic 更是将 Claude 处理 token 能力提升到 100k,约 75000 个单词,大概相当于一键总结《哈利波特》第一部。
在微软最新的一项研究中,他们这次直接将 Transformer 扩展到 10 亿 token。这为建模非常长的序列开辟了新的可能性,例如将整个语料库甚至整个互联网视为一个序列。
作为比较,普通人可以在 5 小时左右的时间里阅读 100,000 个 token,并可能需要更长的时间来消化、记忆和分析这些信息。Claude 可以在不到 1 分钟的时间里完成这些。要是换算成微软的这项研究,将会是一个惊人的数字。

  • 论文地址:https://arxiv.org/pdf/2307.02486.pdf
  • 项目地址:https://github.com/microsoft/unilm/tree/master
具体而言,该研究提出了 LONGNET,这是一种 Transformer 变体,可以将序列长度扩展到超过 10 亿个 token,而不会牺牲对较短序列的性能。文中还提出了 dilated attention,它能指数级扩展模型感知范围。
LONGNET 具有以下优势:
1)它具有线性计算复杂性;
2)它可以作为较长序列的分布式训练器;
3)dilated attention 可以无缝替代标准注意力,并可以与现有基于 Transformer 的优化方法无缝集成。
实验结果表明,LONGNET 在长序列建模和一般语言任务上都表现出很强的性能。
在研究动机方面,论文表示,最近几年,扩展神经网络已经成为一种趋势,许多性能良好的网络被研究出来。在这当中,序列长度作为神经网络的一部分,理想情况下,其长度应该是无限的。但现实却往往相反,因而打破序列长度的限制将会带来显著的优势:
  • 首先,它为模型提供了大容量的记忆和感受野,使其能够与人类和世界进行有效的交互。
  • 其次,更长的上下文包含了更复杂的因果关系和推理路径,模型可以在训练数据中加以利用。相反,较短的依赖关系则会引入更多虚假的相关性,不利于模型的泛化性。
  • 第三,更长的序列长度可以帮助模型探索更长的上下文,并且极长的上下文也可帮助模型缓解灾难性遗忘问题。
然而,扩展序列长度面临的主要挑战是在计算复杂性和模型表达能力之间找到合适的平衡。
例如 RNN 风格的模型主要用于增加序列长度。然而,其序列特性限制了训练过程中的并行化,而并行化在长序列建模中是至关重要的。
最近,状态空间模型对序列建模非常有吸引力,它可以在训练过程中作为 CNN 运行,并在测试时转换为高效的 RNN。然而这类模型在常规长度上的表现不如 Transformer。
另一种扩展序列长度的方法是降低 Transformer 的复杂性,即自注意力的二次复杂性。现阶段,一些高效的基于 Transformer 的变体被提出,包括低秩注意力、基于核的方法、下采样方法、基于检索的方法。然而,这些方法尚未将 Transformer 扩展到 10 亿 token 的规模(参见图 1)。
下表为不同计算方法的计算复杂度比较。N 为序列长度,d 为隐藏维数。
方法
该研究的解决方案 LONGNET 成功地将序列长度扩展到 10 亿个 token。具体来说,该研究提出一种名为 dilated attention 的新组件,并用 dilated attention 取代了 Vanilla Transformer 的注意力机制。通用的设计原则是注意力的分配随着 token 和 token 之间距离的增加而呈指数级下降。该研究表明这种设计方法获得了线性计算复杂度和 token 之间的对数依赖性。这就解决了注意力资源有限和可访问每个 token 之间的矛盾。
在实现过程中,LONGNET 可以转化成一个密集 Transformer,以无缝地支持针对 Transformer 的现有优化方法(例如内核融合(kernel fusion)、量化和分布式训练)。利用线性复杂度的优势,LONGNET 可以跨节点并行训练,用分布式算法打破计算和内存的约束。
最终,该研究有效地将序列长度扩大到 1B 个 token,而且运行时(runtime)几乎是恒定的,如下图所示。相比之下,Vanilla Transformer 的运行时则会受到二次复杂度的影响。
该研究进一步引入了多头 dilated attention 机制。如下图 3 所示,该研究通过对查询 - 键 - 值对的不同部分进行稀疏化,在不同的头之间进行不同的计算。
分布式训练
虽然 dilated attention 的计算复杂度已经大幅降低到,但由于计算和内存的限制,在单个 GPU 设备上将序列长度扩展到百万级别是不可行的。有一些用于大规模模型训练的分布式训练算法,如模型并行 [SPP+19]、序列并行 [LXLY21, KCL+22] 和 pipeline 并行 [HCB+19],然而这些方法对于 LONGNET 来说是不够的,特别是当序列维度非常大时。
该研究利用 LONGNET 的线性计算复杂度来进行序列维度的分布式训练。下图 4 展示了在两个 GPU 上的分布式算法,还可以进一步扩展到任意数量的设备。
实验
该研究将 LONGNET 与 vanilla Transformer 和稀疏 Transformer 进行了比较。架构之间的差异是注意力层,而其他层保持不变。研究人员将这些模型的序列长度从 2K 扩展到 32K,与此同时减小 batch 大小,以保证每个 batch 的 token 数量不变。
表 2 总结了这些模型在 Stack 数据集上的结果。研究使用复杂度作为评估指标。这些模型使用不同的序列长度进行测试,范围从 2k 到 32k 不等。当输入长度超过模型支持的最大长度时,研究实现了分块因果注意力(blockwise causal attention,BCA)[SDP+22],这是一种最先进的用于语言模型推理的外推方法。
此外,研究删除了绝对位置编码。首先,结果表明,在训练过程中增加序列长度一般会得到更好的语言模型。其次,在长度远大于模型支持的情况下,推理中的序列长度外推法并不适用。最后,LONGNET 一直优于基线模型,证明了其在语言建模中的有效性。
序列长度的扩展曲线
图 6 绘制了 vanilla transformer 和 LONGNET 的序列长度扩展曲线。该研究通过计算矩阵乘法的总 flops 来估计计算量。结果表明,vanilla transformer 和 LONGNET 都能从训练中获得更大的上下文长度。然而,LONGNET 可以更有效地扩展上下文长度,以较小的计算量实现较低的测试损失。这证明了较长的训练输入比外推法更具有优势。实验表明,LONGNET 是一种更有效的扩展语言模型中上下文长度的方法。这是因为 LONGNET 可以更有效地学习较长的依赖关系。
扩展模型规模
大型语言模型的一个重要属性是:损失随着计算量的增加呈幂律扩展。为了验证 LONGNET 是否仍然遵循类似的扩展规律,该研究用不同的模型规模(从 1.25 亿到 27 亿个参数) 训练了一系列模型。27 亿的模型是用 300B 的 token 训练的,而其余的模型则用到了大约 400B 的 token。图 7 (a) 绘制了 LONGNET 关于计算的扩展曲线。该研究在相同的测试集上计算了复杂度。这证明了 LONGNET 仍然可以遵循幂律。这也就意味着 dense Transformer 不是扩展语言模型的先决条件。此外,可扩展性和效率都是由 LONGNET 获得的。
长上下文 prompt
Prompt 是引导语言模型并为其提供额外信息的重要方法。该研究通过实验来验证 LONGNET 是否能从较长的上下文提示窗口中获益。
该研究保留了一段前缀(prefixes)作为 prompt,并测试其后缀(suffixes)的困惑度。并且,研究过程中,逐渐将 prompt 从 2K 扩展到 32K。为了进行公平的比较,保持后缀的长度不变,而将前缀的长度增加到模型的最大长度。图 7 (b) 报告了测试集上的结果。它表明,随着上下文窗口的增加,LONGNET 的测试损失逐渐减少。这证明了 LONGNET 在充分利用长语境来改进语言模型方面的优越性。

点击进入—>【目标检测和Transformer】交流群


最新CVPR 2023论文和代码下载


后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


目标检测和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信号: CVer333,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!


扫码进星球


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
在Transformer时代重塑RNN,RWKV将非Transformer架构扩展到数百亿参数transformer的细节到底是怎么样的?Transformer 连环18问!Transformer取代者登场!微软、清华刚推出RetNet:成本低、速度快、性能强手套花,慢慢呈现​下一代Transformer:RetNet结构可视化及Vision RetNet展望儿子画的画:春花12种模态,一个学习框架,Meta-Transformer实现骨干网络大一统Transformer开山论文惊天「翻车」?图与代码不一致,神秘bug看傻了微软新出热乎论文:Transformer扩展到10亿tokenHélène Binet:光的哲学家ICML 2023 | 轻量级视觉Transformer (ViT) 的预训练实践手册Transformer作者创立,Hinton、李飞飞青睐,明星创企Cohere推出打工人专用知识助手比Transformer快4成!Meta发布全新Megabyte模型,解决算力损耗硬伤相互利用还是相互欺骗?为何俄罗斯始终坚定支持印度“入常”? zt1000000000!微软改进Transformer一次能记住这么多token了PANet、DANet、FastFCN、OneFormer…你都掌握了吗?一文总结图像分割必备经典模型(三)ICCV 2023 | token过度聚焦暴露注意力机制弱点,两种模块设计增强视觉Transformer鲁棒性无自注意力照样高效!RIFormer开启无需token mixer的Transformer结构新篇章Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽transformer高效训练方法一览ACL 2023 Findings | 概率句法角度的Transformer诠释田渊栋新作:打开1层Transformer黑盒,注意力机制没那么神秘confident not they will like me but it is fine if they don'tVCE物理— transformer的理解和例题大模型的好伙伴,浅析推理加速引擎FasterTransformerBooth Program | Strategic Digital Transformation—in Hong KongICLR 2023|场景三维重建新SOTA!基于3D Transformer的单目场景重建云原生 AI 工程化实践:FasterTransformer 加速 LLM 推理基于Transformer的大模型是如何运行的?Meta从全局和上下文学习揭秘PackedBert:如何用打包的方式加速Transformer的自然语言处理任务图与代码不一致,Transformer论文被发现错误,网友:早该被指出1000次星标破10万!Auto-GPT之后,Transformer越新里程碑Transformer论文「重磅更新」!八子全部离职,谷歌删除Attention Is All You Need所有作者邮箱罗马斗兽场(Colosseum), 古代建筑Transformer全新里程碑!诞生6年,开山之作被引近8万,没夺下NeurIPS最佳论文,却彻底改变AI界
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。