Redian新闻
>
两只母鲨鱼在一起生活10年,忽然生了小鲨鱼?孩子它爹究竟是谁?自然界中的“孤雌生殖”了解一下…(附视频&演讲稿)

两只母鲨鱼在一起生活10年,忽然生了小鲨鱼?孩子它爹究竟是谁?自然界中的“孤雌生殖”了解一下…(附视频&演讲稿)

公众号新闻
高质量英语演讲&专访视频哪里看?
请您点击上方“精彩英语演讲”,并“设为星标
全网最新的英语演讲&专访第一时间为您奉上


2021年,意大利撒丁岛一家水族馆的工作人员惊奇地发现一条星鲨出生了,并给它起名为Ispera。



令人震惊的是,在过去十年的里,Ispera的母亲一直只和其它雌性鲨鱼生活在一起。那么,它的出生是怎么回事呢?它爹又是谁呢?其它物种可以这样繁殖吗?


大家知道,绝大多数胚胎形成的条件是精子与卵细胞结合。而在这些孤雌繁殖的案例中,雌性个体产生的卵细胞可以不经受精作用直接发育成新的个体,同时因为孩子的所有DNA均来自母亲,所以这个孩子也就相当于是妈妈的克隆体。


孤雌生殖的鲨鱼虽然很神奇,但这也侧面说明了鲨鱼种群已经非常危险,许多雌性鲨鱼为了繁殖已经开始进化出了各种方法。




这种全雌性的物种是如何繁殖的?

↓↓↓ 上下滑动,查看演讲稿 ↓↓↓


In 2021, workers at a Sardinian aquarium were stunned by the birth  of a smoothhound shark, who they called Ispera. 

What shocked them was that, for the last decade,  Ispera’s mother had been living only with other females. 

But it’s actually entirely possible that Ispera had no father—  and the reason why that is also explains other biological curiosities,  like the existence of an all-female lizard species. 

Usually sexual species have sex cells that contain  half the number of chromosomes required to create a viable embryo. 

So an egg cell must be fertilized by a sperm cell  to form two full sets of chromosomes. 

But some species that have sex cells can undergo  a type of asexual reproduction called parthenogenesis—  meaning “virgin origin” in Greek. 

In parthenogenesis, an embryo develops from an unfertilized egg cell  that doubles its own chromosome count. 

In fact, some animals only ever undergo parthenogenesis,  while others can reproduce both sexually and parthenogenetically. 

It's actually more common than previously thought. 

More than 80 different sexual vertebrate species—  including Komodo dragons and certain kinds of turkeys, pythons, and sharks—  have surprised us by occasionally reproducing this way. 

These discoveries were usually made when females  unexpectedly gave birth in captivity. 

Ispera’s birth, for one, may have been the first account  of parthenogenesis in smoothhound sharks. 

Scientists also confirmed that parthenogenesis was taking place  in some wild snake populations. 

But just how many fatherless creatures are running, slithering, and swimming  around out there is unknown:  it’s a tough thing to track without population-wide genetic analyses. 

So, why is it happening at all?  Scientists think parthenogenesis could be evolutionarily beneficial  in some contexts because, well, sex can be a drag. 

Mating and its associated demands and rituals can be time- and energy-intensive,  leave individuals vulnerable to predators, and even be fatal. 

Parthenogenesis, meanwhile, requires only one parent. 

Mayflies can sometimes default to parthenogenesis  if there are no males available,  which is especially handy because they’ve only got a day or so  to reproduce before dying. 

It can also help rapidly expand a population. 

In the summer, when food is abundant,  pea aphids can rely on parthenogenesis,  allowing their population to explode under favorable conditions. 

And in the autumn, they switch back to sex. 

But some aphids, katydids, lizards, geckos, and snakes  only ever reproduce via parthenogenesis. 

So, why do other animals bother with sex?  Scientists hypothesize that sex makes up for its shortcomings with long-term gains. 

It allows individuals to mix their genes, leading to greater genetic diversity. 

That way, when the going gets tough,  beneficial mutations can be selected and harmful ones can be removed  without ending the entire population. 

In a parthenogenetic population, on the other hand,  individuals can only reproduce using their own genetic material. 

According to a theory called Muller’s ratchet,  that’s not good. 

The theory predicts that parthenogenetic lineages will accumulate harmful mutations  over time and eventually, after thousands of generations,  will reach a point of so-called mutational meltdown. 

At this stage, individuals will be so compromised that they can't reproduce,  so the population will nosedive, leading to extinction. 

We haven’t yet seen this entire process unfold in nature. 

But scientists have observed an accumulation of harmful mutations  in parthenogenetic stick insects that are absent in their sexual relatives. 

Only time will tell whether this will cause their extinction. 

Otherwise, some parthenogenetic species appear to have ways of circumventing  a mutational meltdown. 

New Mexico whiptail lizards came about  when two different lizard species hybridized,  creating this new all-female species. 

As hybrids, their genome is a combination of the different sets of chromosomes  from their two parent species. 

This gives them a high level of genetic diversity,  which may allow them to survive long into the future. 

Bdelloid rotifers, meanwhile, have been reproducing parthenogenetically  for 60 million years. 

They might have managed this by taking in foreign genetic material. 

Indeed, about 10% of their genes comes from other organisms,  like fungi, bacteria, and algae. 

How exactly they do this is unclear,  but whatever the trick is, it seems to be working. 

To totally untangle the mysteries of reproduction,  we’ll need more research—  and probably a few more surprises like Ispera.

2021 年,撒丁岛一家水族馆的工作人员惊奇地发现一条星鲨出生了,并给它起名为 Ispera。

令人震惊的是,过去十年里,Ispera 的母亲一直只和其它雌性鲨鱼生活在一起。

但 Ispera 没有父亲是完全有可能的,而其背后的原因也可以解释其它奇特的生物,比如全雌性的蜥蜴物种的存在。

有性繁殖的物种通常有性细胞,包含形成胚胎所需的一半染色体。

因此,卵细胞必须由精子受精才能形成两套完整的染色体。

不过,一些具有性细胞的物种可以进行一种无性繁殖,即“孤雌生殖” (parthenogenesis),在希腊语中是“处女起源”的意思。

在孤雌生殖中,胚胎由未受精的卵细胞在染色体数目翻倍后发育而来。

实际上,有些动物只进行孤雌生殖,而另些则既可以进行有性繁殖,也能进行孤雌生殖。

这种现象比先前认为的更常见。

超过80种不同的有性脊椎动物,包括科摩多巨蜥和一些火鸡、蟒蛇、鲨鱼等,偶尔会以这种令人惊讶的方式繁殖。

这些现象往往是通过被捕的雌性动物意外分娩发现的。

Ispera 的诞生则是记录中的第一例星鲨孤雌生殖。

科学家们也发现,孤雌生殖还会在某些野生蛇类种群中发生。

但是,没有人知道世界上到底有多少无父亲的生物在四处游走:由于缺乏种群范围内的遗传分析,追踪变得非常困难。

那么, 这到底为什么发生呢?科学家们认为,孤雌生殖有时候在进化上更有利,因为交配可以成为一种负担。

交配和其相关的需求规范需要大量的时间和能量,使个体易受到捕食者的伤害,甚至会致命。

而孤雌生殖只需要一位父母。

蜉蝣在没有雄性存在的条件下可以转为孤雌生殖,这非常方便,因为它们在死亡前只有一天左右的时间进行繁殖。

这也能帮助迅速扩大种群。

在夏季食物充足的时候,豌豆蚜可以孤雌生殖,让种群数量在有利环境中迅速膨胀。

到了秋季,它们就会回归有性生殖。

而有些蚜虫、蝈蝈、蜥蜴、壁虎、蛇等只进行孤雌生殖。

那么,为什么还需要有性生殖呢?科学家们提出假说,认为有性生殖的长期收益能弥补不足。

有性繁殖能混合不同个体的基因,从而提高遗传多样性。

这样,当环境变得不利于生存时,自然选择可以保留有益突变、剔除有害突变,而不至于让整个种群灭绝。

另一方面,在孤雌生殖的群体中,个体只能利用自身的遗传物质进行繁殖。

根据穆勒棘轮效应,这不是好事。

此理论推测,孤雌生殖的血族会逐渐积累有害突变,最终在几千代以后,达到所谓的“变异熔断”。

到这个节点,个体已经非常受损,无法再继续繁殖,种群数量将猛跌造成灭绝。

我们还没在自然界中观察到整个过程发生,但科学家们已经发现,一种孤雌生殖的粘虫在缺乏性伴侣时积累起有害的变异。

只有时间才能证明,这是否会导致它们的灭绝。

不过,一些孤雌生殖的物种似乎有策略规避变异熔断。

新墨西哥鞭尾蜥是通过两种不同蜥蜴的杂交形成,是一种新的全雌性物种。

作为杂交种,它们的基因组分别是由两个亲代物种的染色体组合而成。

这使它们具有高度的遗传多样性,也许有助于未来的长期生存。

与此同时,蛭形轮虫已经孤雌生殖了近 6000 万年。

它们可能是通过吸收外来的遗传物质以避免变异熔断。

实际上,它们大概 10% 的基因来自其它生物,像真菌、细菌、藻类等。

这其中的过程无人了解,但不论如何,这种方法似乎有作用。

为了完全揭开繁殖的奥秘,我们需要更多研究——以及像 Ispera 这样的意外。





孤雌生殖
Parthenogenesis

↓↓↓ 上下滑动,查看演讲稿 ↓↓↓


You have a mum and a dad and maybe a few siblings. 

You are different - maybe very different -  from everyone else in your family. 

What would you and your siblings look like if you came from only  a mother with no father?  Would you look just like your mum?  Just like your siblings?  Would you all be a family of identical daughters?  Or would you and your siblings all be different from your mum  AND different from one another?  Could you even be... a boy??  To answer questions like these, we have to know more about  how eggs are formed by the process of oogenesis,  which occurs in the ovaries of a female. 

In the ovaries of a female, diploid oogonia divide by mitosis  to produce more oogonia and specialized primary oocytes -  still diploid - that are committed to producing eggs. 

The egg may then be fertilized by a sperm to produce an offspring. 

This is how offspring are usually produced. 

Parthenogenesis is a form of reproduction  in which an egg develops into a new individual  without being fertilized by a sperm. 

Let's examine normal oogenesis more closely before considering  reproduction through parthenogenesis. 

In normal oogenesis, the diploid primary oocyte divides by meiosis  to produce haploid daughter cells. 

Let's follow this process for a cell with 2n = 4 chromosomes. 

Remember that each homologous pair of chromosomes consists of  one paternal and one maternal chromosome. 

These chromosomes carry the same genes in the same sequence,  but may carry different alleles. 

Each chromosome has been replicated in the S phase of interphase and  now consists of two identical sister chromatids, joined at the centromere. 

During Prophase I of Meiosis I, the chromosomes condense,  become visible, and homologous chromosomes are paired up in synapsis. 

Crossing over occurs as non-sister chromatids on homologous chromosomes  exchange genetic information. 

With crossing over, a chromosome is no longer fully maternal  or fully paternal but rather a mixture of maternal and paternal alleles  In Metaphase I, the paired chromosomes line up along the cell's  equatorial plane. 

Pairs of homologous chromosomes line up randomly, with either member  of the pair oriented to one pole or the other. 

The pairs also orient randomly relative to other pairs,  in the process of independent assortment. 

In Anaphase I, the chromosomes in each homologous pair  are separated from each other and pulled to opposite poles. 

In Telophase I, one haploid set of chromosomes is present at each pole. 

The cell divides by cytokinesis to produce two cells:  a large haploid daughter cell called a secondary oocyte  and a tiny polar body,  with a haploid nucleus and very little cytoplasm. 

Meiosis II is very similar to mitosis,  the type of cell division that occurs in somatic cells. 

The Meiosis I products divide in Meiosis II  to produce two daughter cells,  one of which becomes the egg. 

Remember, the Meiosis I products  are haploid and so are its daughter cells. 

Meiosis II starts with Prophase II,  as the chromosomes condense. 

In Metaphase II, the chromosomes move to the center of the cell  and line up along the equatorial plane. 

In Anaphase II, the chromatids making up a chromosome  are separated from each other and pulled to opposite poles. 

During Telophase II and cytokinesis, the cell divides to produce  two haploid daughter cells: a large egg and a tiny polar body. 

We will now discuss four ways that this process can be altered  to produce parthenogenetic offspring. 

Mitotic division of the primary oocyte;  Combination of the primary polar body with the secondary oocyte;  Combination of the egg with a secondary polar body;  And the haploid ovum divides by mitosis  instead of fusing with sperm. 

Imagine that a female reproduces by parthogenesis  without undergoing meiosis,  as primary oocytes develop  directly into offspring by mitosis, instead. 

Will the parthenogenetic offspring  be genetically identical to their mum  or genetically different?  Will the offspring be  genetically identical to one another  or genetically different?  Will the offspring be male or female?  Imagine that the two haploid cells produced by Meiosis I  (the secondary oocyte and the polar body)  fuse back together to yield a diploid cell  and that this new cell  develops into an offspring by parthenogenesis. 

Will the parthenogenetic offspring  be genetically identical to their mum or genetically different?  Will the offspring be genetically  identical to one another or genetically different?  Will the offspring be male or female?  Imagine that the egg and the polar body  produced at the end of Meiosis II fuse to yield a diploid cell  and that this new cell develops into an offspring by parthenogenesis. 

Will the parthenogenetic offspring  be genetically identical to their mum or genetically different?  Will the offspring be genetically  identical to one another or genetically different?  Will the offspring be male or female?  Usually, a haploid sperm fertilizes the haploid egg  to produce a diploid zygote,  which develops into an offspring. 

What if, instead of fusing with a sperm,  the haploid egg divides by mitosis?  For this to occur, chromosomes have to be replicated. 

During the S phase of interphase,  the DNA of the single chromatid  making up each chromosome in the developing egg is replicated. 

The chromosomes now consist of two identical sister chromatids,  joined at the centromere. 

Remember that each chromosome is a product of crossing over  and comprises a combination of maternal and paternal genes. 

During mitosis,  the replicated chromosomes line up along the equatorial plane  at the center of the cell. 

The sister chromatids are pulled apart from each other  to opposite poles as individual chromosomes. 

But instead of completing mitosis and cytokinesis,  the new chromosomes stay in a single cell. 

Each chromatid now becomes an individual chromosome  as they separate from each other,  so the cell is now diploid. 

Imagine that this diploid cell develops into an offspring. 

This is another form of parthenogenesis,  because again,  an unfertilized egg is developing into an offspring. 

Will the parthenogenetic offspring be genetically identical to their mum  or genetically different?  Will the offspring be genetically identical to one another  or genetically different?  Will the offspring be male or female?  So there are four different ways for parthenogenesis to take place  to produce an offspring from a mum, with no dad. 

Many animals develop this way, and some of them may surprise you. 






防止再次失联,请立即关注备用号



— 往期精彩英语演讲集 —

汤加海底火山喷发,多国发海啸预警!为什么海水无法将其浇灭?科学答案都在这两个英文短片中!(附视频&演讲稿)
张衡地动仪被历史课本删除!问题来了:地震仪在古代到底有没有用?(附视频)
这部58分钟BBC纪录片告诉你,为什么我们还是无法预测地震?(附视频)
东京大学地震专家TED演讲:面对地震,靠什么来拯救生命?(附视频&演讲稿)
TED:如何及时避免灾难发生,这个方法值得一试!(附视频&演讲稿)
14分钟TED演讲揭示:面对“天灾”,我们可以做得更好!(附视频&演讲稿




想第一时间观看高质量英语演讲&采访视频?把“精彩英语演讲”设置为星标就对了!操作办法就是:进入公众号——点击右上角的●●●——找到“设为星标”点击即可。


快分享
要收藏
点个赞
点在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
豆瓣9.5分!BBC纪录片《自然界大事件》全6集,一部震撼巨制!(附视频)华人首位!61岁梁朝伟获威尼斯电影节终身成就奖,网友:被李安的梦幻颁奖词打动了…(附视频&摘要稿)处女产子?科学家发现孤雌生殖的基因开关打破259年历史!郑州小伙傅楷量,成为第一位登上布朗大学毕业演讲台的中国留学生!(附视频&演讲稿)历时一年,BBC追查售卖性侵和偷拍影片网站,发现是一个27岁中国男人在日本搞的…(附视频&摘要稿)79次掌声!印度总理莫迪美国国会演讲:印度是“民主之母”,将很快成为全球第三大经济体!(附视频&演讲稿)【美国春天母亲节5年回顾原创三部曲六一钢琴节】我为柳宗元《小石潭记》作曲 &《让我们唱在夏天里》&《卖火柴的小女孩》真人【美国春天母亲节5原创钢琴三部曲 “粉衣蓝裙”不表白庆六一艺术节】《美丽夏天温柔的雨》&《爱的童话》&《雷雨之后》英伟达创始人黄仁勋台湾大学毕业演讲:不努力觅食,就等着被当成食物…(附视频&演讲稿)普林斯顿大学校长2023年开学日演讲:批判思考,大方拥抱!(附视频&演讲稿)索罗斯门徒、默多克前女婿:64岁欧洲对冲基金大佬克里斯平·欧迪的陨落…(附视频&解说稿)普林斯顿校长2023年毕业演讲:我们必须站起来,为自由表达的价值观而发声!(附视频&演讲稿)拿下"美国状元"的华裔少年,被6所藤校和斯坦福MIT争抢,成功秘诀藏在父亲的一番话里…(附视频&摘要稿)涉嫌推翻2020年大选结果,特朗普又双叒叕被刑事起诉!“懂王”回应:虚假指控,干扰大选!(附视频&解说稿)这个夏天,每个男人必须拥有的「百搭王」!超凉快的“空调裤”了解一下…奥巴马父亲节精彩演讲:男人真正的本事并非拥有孩子,而是把孩子培养好!(附视频&演讲稿)29年18次访华,比尔·盖茨北京演讲:以创新之力和乐观态度,去应对当前的全球挑战!(附视频&演讲稿)Holiday Special 七月上 望七月 ~~ poem & song by 盈盈 & APTED演讲:从英语最差到掌握9国语言,她是如何学好外语的?(附视频&演讲稿)zt阿肯森所有演讲都喜欢秀老图片原因是他所发现的东西经受住了时间的考验写进了教科书马斯克2023年世界人工智能大会演讲:我相信,中国会有很强的人工智能能力!(附视频&演讲稿)要是当初不出国(4)祝亲生儿子不幸和痛苦?在父亲节当天,美国大法官的演讲在全美引起轰动!(附视频&演讲稿)【美国春天母亲节献礼4女高音三部曲 舞台艺术节255】春天原创现场舞台:《妈妈是天使》&《游子吟:三春晖》&《春天摇篮》TED演讲:戒掉玻璃心,你才能成为一个真正厉害的人!(附视频&演讲稿)【原创歌曲】又见桐花开山火发生两周后,拜登到访夏威夷毛伊岛:美国政府将尽一切可能帮助毛伊岛恢复和重建!(附视频&演讲稿)又“僵住”了,81岁参议院共和党领袖麦康奈尔“大脑宕机”超30秒,履职能力遭到质疑…(附视频&解说稿)《葬花呤》耶鲁大学校长2023年开学日演讲:放慢脚步,弥合裂缝!(附视频&演讲稿)春暖花开他发明苹果电脑,冒充美国国务卿,出演生活大爆炸…昨天,72岁的他二度受邀在UC伯克利发表毕业演讲!(附视频&演讲稿)又是一年秋梨膏(附视频)如何培养出下一代企业家?这个高赞TED演讲值得一看!(附视频&演讲稿)广东男子怒扇婴儿引发网民激愤, 这个TED演讲揭示:童年创伤如何影响你的一生?(附视频&演讲稿)昆虫变态——自然界中的终极变身魔法太燃了!施瓦辛格7分钟超励志演讲:普通人想成功,请你记住这5个法则…(附视频&演讲稿)震惊世界的杀婴案判了!25岁英国微笑女护士,1年内残忍杀死7名新生儿…(附视频&解说稿)当着七家美国AI科技公司高管,拜登直言“我就是人工智能”…(附视频&演讲稿)因涉嫌试图推翻2020年美国大选结果,特朗普再遭刑事指控,被控4项罪名…(附视频&解说稿)
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。