Redian新闻
>
真正实现一步文生图,谷歌UFOGen极速采样,生成高质量图像

真正实现一步文生图,谷歌UFOGen极速采样,生成高质量图像

公众号新闻

机器之心专栏

机器之心编辑部


最近一年来,以 Stable Diffusion 为代表的一系列文生图扩散模型彻底改变了视觉创作领域。数不清的用户通过扩散模型产生的图片提升生产力。但是,扩散模型的生成速度是一个老生常谈的问题。因为降噪模型依赖于多步降噪来逐渐将初始的高斯噪音变为图片,因此需要对网络多次计算,导致生成速度很慢。这导致大规模的文生图扩散模型对一些注重实时性,互动性的应用非常不友好。随着一系列技术的提出,从扩散模型中采样所需的步数已经从最初的几百步,到几十步,甚至只需要 4-8 步。


最近,来自谷歌的研究团队提出了 UFOGen 模型,一种能极速采样的扩散模型变种。通过论文提出的方法对 Stable Diffusion 进行微调,UFOGen 只需要一步就能生成高质量的图片。与此同时,Stable Diffusion 的下游应用,比如图生图,ControlNet 等能力也能得到保留。


论文链接:https://arxiv.org/abs/2311.09257


从下图可以看到,UFOGen 只需一步即可生成高质量,多样的图片。



提升扩散模型的生成速度并不是一个新的研究方向。之前关于这方面的研究主要集中在两个方向。一个方向是设计更高效的数值计算方法,以求能达到利用更少的离散步数求解扩散模型的采样 ODE 的目的。比如清华的朱军团队提出的 DPM 系列数值求解器,被验证在 Stable Diffusion 上非常有效,能显著地把求解步数从 DDIM 默认的 50 步降到 20 步以内。另一个方向是利用知识蒸馏的方法,将模型的基于 ODE 的采样路径压缩到更小的步数。这个方向的例子是 CVPR2023 最佳论文候选之一的 Guided distillation,以及最近大火的 Latent Consistency Model (LCM)。尤其是 LCM,通过对一致性目标进行蒸馏,能够将采样步数降到只需 4 步,由此催生了不少实时生成的应用。


然而,谷歌的研究团队在 UFOGen 模型中并没有跟随以上大方向,而是另辟蹊径,利用了一年多前提出的扩散模型和 GAN 的混合模型思路。他们认为前面提到的基于 ODE 的采样和蒸馏有其根本的局限性,很难将采样步数压缩到极限。因此想实现一步生成的目标,需要打开新的思路。


扩散模型和 GAN 的混合模型最早是英伟达的研究团队在 ICLR 2022 上提出的 DDGAN(《Tackling the Generative Learning Trilemma with Denoising Diffusion GANs》)。其灵感来自于普通扩散模型对降噪分布进行高斯假设的根本缺陷。简单来说,扩散模型假设其降噪分布(给定一个加了噪音的样本,对噪音含量更少的样本的条件分布)是一个简单的高斯分布。然而,随机微分方程理论证明这样的假设只在降噪步长趋于 0 的时候成立,因此扩散模型需要大量重复的降噪步数来保证小的降噪步长,导致很慢的生成速度。


DDGAN 提出抛弃降噪分布的高斯假设,而是用一个带条件的 GAN 来模拟这个降噪分布。因为 GAN 具有极强的表示能力,能模拟复杂的分布,所以可以取较大的降噪步长来达到减少步数的目的。然而,DDGAN 将扩散模型稳定的重构训练目标变成了 GAN 的训练目标,很容易造成训练不稳定,从而难以延伸到更复杂的任务。在 NeurIPS 2023 上,和创造 UGOGen 的同样的谷歌研究团队提出了 SIDDM(论文标题 Semi-Implicit Denoising Diffusion Models),将重构目标函数重新引入了 DDGAN 的训练目标,使训练的稳定性和生成质量都相比于 DDGAN 大幅提高。


SIDDM 作为 UFOGen 的前身,只需要 4 步就能在 CIFAR-10, ImageNet 等研究数据集上生成高质量的图片。但是 SIDDM 有两个问题需要解决:首先,它不能做到理想状况的一步生成;其次,将其扩展到更受关注的文生图领域并不简单。为此,谷歌的研究团队提出了 UFOGen,解决这两个问题。


具体来说,对于问题一,通过简单的数学分析,该团队发现通过改变生成器的参数化方式,以及改变重构损失函数计算的计算方式,理论上模型可以实现一步生成。对于问题二,该团队提出利用已有的 Stable Diffusion 模型进行初始化来让 UFOGen 模型更快更好的扩展到文生图任务上。值得注意的是,SIDDM 就已经提出让生成器和判别器都采用 UNet 架构,因此基于该设计,UFOGen 的生成器和判别器都是由 Stable Diffusion 模型初始化的。这样做可以最大限度地利用 Stable Diffusion 的内部信息,尤其是关于图片和文字的关系的信息。这样的信息很难通过对抗学习来获得。训练算法和图示见下。




值得注意的是,在这之前也有一些利用 GAN 做文生图的工作,比如英伟达的 StyleGAN-T,Adobe 的 GigaGAN,都是将 StyleGAN 的基本架构扩展到更大的规模,从而也能一步文生图。UFOGen 的作者指出,比起之前基于 GAN 的工作,除了生成质量外,UFOGen 还有几点优势:


1. 纯粹的 GAN 训练非常不稳定,尤其是对文生图任务来说,判别器不但需要判别图片的纹理,还需要理解图片和文字的匹配程度,而这是十分困难的任务,尤其在训练早期。因此,之前的 GAN 模型比如 GigaGAN,引入大量的辅助 loss 来帮助训练,这使得训练和调参变得异常困难。UFOGen 因为有重构损失,GAN 在这里起到辅助作用,因此训练非常稳定。


2. 直接从头开始训练 GAN 除了不稳定还异常昂贵,尤其是在文生图这样需要大量数据和训练步数的任务下。因为需要同时更新两组参数,GAN 的训练比扩散模型来说消耗的时间和内存都更大。UFOGen 的创新设计能从 Stable Diffusion 中初始化参数,大大节约了训练时间。通常收敛只需要几万步训练。


3. 文生图扩散模型的一大魅力在于能适用于其他任务,包括不需要微调的应用比如图生图,已经需要微调的应用比如可控生成。之前的 GAN 模型很难扩展到这些下游任务,因为微调 GAN 一直是个难题。相反,UFOGen 拥有扩散模型的框架,因此能更简单地应用到这些任务上。下图展示了 UFOGen 的图生图以及可控生成的例子,注意这些生成也只需要一步采样。



实验表明,UFOGen 只需一步采样便可以生成高质量的,符合文字描述的图片。在和近期提出的针对扩散模型的高速采样方法的对比中(包括 Instaflow,以及大火的 LCM),UFOGen 展示出了很强的竞争力。甚至和 50 步采样的 Stable Diffusion 相比,UFOGen 生成的样本在观感上也没有表现得更弱。下面是一些对比结果:



总结


通过提升现有的扩散模型和 GAN 的混合模型,谷歌团队提出了强大的能实现一步文生图的 UFOGen 模型。该模型可以由 Stable Diffusion 微调而来,在保证一步文生图能力的同时,还能适用于不同的下游应用。作为实现超快速文本到图像合成的早期工作之一,UFOGen 为高效率生成模型领域开启了一条新道路。




© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
大臣们怎么想?抖音跳舞不用真人出镜,一张照片就能生成高质量视频!字节新技术连抱抱脸CTO都下场体验了实测腾讯AI文生图!王者荣耀画风一键直出,小程序就能玩超越同级7B模型! 中国团队开源大规模高质量图文数据集ShareGPT4V,大幅提升多模态性能超低训练成本文生图模型PixArt来了,效果媲美MJ,只需SD 10%训练时间四川大学校友上市公司高质量发展大会在成都盛大举行 推动“校地企”高质量融合发展​以高质量发展推动新时代西部大开发——重庆四川贵州高质量发展调研报告提升科技创新能力,推动重点产业链高质量发展——2024年推动工业和信息化高质量发展系列述评之二对标DALL·E 3!Meta最强文生图Emu技术报告出炉弥合2D和3D生成之间的次元壁!X-Dreamer:高质量的文本到3D生成模型真实性惊人,谷歌、康奈尔提出真实的图像补全技术RealFill那咬一口香死人的流沙月饼刚刚开源!中科大提出利用GPT4-V构建大规模高质量图文数据集ShareGPT4V,助力模型霸榜多项多模态榜单!NeurIPS 2023 Spotlight|高质量多视角图像生成,完美复刻场景材质!SFU等提出MVDiffusion特别策划|聚焦进博:以高质量外资促高质量发展「文生图」再升级!学习个性化参照,无限生成多样图片,轻松设计玩具建筑腾讯混元大模型开放文生图;微软AI投资重心或转向应用和业务;国产大模型10月榜单公布丨AIGC大事日报第九章第三节 联邦司法系统的组织运作语言模型战胜扩散模型!谷歌提出MAGVIT-v2:视频和图像生成上实现双SOTA!谷歌搜索推出文生图功能;GitHub辟谣Copilot服务亏损;微软启动AI漏洞赏金计划丨AIGC大事日报孤独,寂寞的Amazon软件工程师Gemini背后,谷歌真正可怕之处并不在模型本身大语言模型击败扩散模型!视频图像生成双SOTA,谷歌CMU最新研究,一作北大校友单个A100生成3D图像只需30秒,这是Adobe让文本、图像都动起来的新方法谷歌推出创新SynCLR技术:借助AI生成的数据实现高效图像建模,开启自我训练新纪元!PS+AI生图一步完成,效果惊人!Adobe Firefly 2重磅更新:模型全面升级,矢量图完美支持谷歌新作UFOGen:通过扩散GAN实现大规模文本到图像生成抖音封禁“快速过款”玩法;交个朋友入淘周年庆单日GMV破2亿;腾讯混元大模型开放“文生图”功能 | 一周简讯腾讯混元大模型再进化,文生图能力重磅上线,这里是一手实测6012 血壮山河之随枣会战 南昌之战 5复旦大学联合华为诺亚提出VidRD框架,实现迭代式的高质量视频生成谷歌发布Prompt Expansion框架,让文生图更轻松!推动信息通信业高质量发展,为新型工业化夯实数字基础——2024年推动工业和信息化高质量发展系列述评之四小米正式发布小米澎湃OS;​腾讯混元开放文生图功能,代码能力提升20%;荣耀重返中国第三季度智能手机出货量第一……媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。