Redian新闻
>
加快20倍!Meta重磅提出EfficientSAM:快速分割一切!

加快20倍!Meta重磅提出EfficientSAM:快速分割一切!

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【图像分割】微信交流群

扫码加入CVer知识星球可以最快学习到最新顶会顶刊上的论文ideaCV从入门到精通资料,以及最前沿项目和应用!发论文,强烈推荐!

在CVer微信公众号后台回复:EfficientSAM,即可下载论文pdf和代码链接!快学起来!

转载自:机器之心 | 编辑:陈萍、蛋酱

对于 2023 年的计算机视觉领域来说,「分割一切」(Segment Anything Model)是备受关注的一项研究进展。


Meta四月份发布的「分割一切模型(SAM)」效果,它能很好地自动分割图像中的所有内容


Segment Anything 的关键特征是基于提示的视觉 Transformer(ViT)模型,该模型是在一个包含来自 1100 万张图像的超过 10 亿个掩码的视觉数据集 SA-1B 上训练的,可以分割给定图像上的任何目标。这种能力使得 SAM 成为视觉领域的基础模型,并在超出视觉之外的领域也能产生应用价值。


尽管有上述优点,但由于 SAM 中的 ViT-H 图像编码器有 632M 个参数(基于提示的解码器只需要 387M 个参数),因此实际使用 SAM 执行任何分割任务的计算和内存成本都很高,这对实时应用来说具有挑战性。后续,研究者们也提出了一些改进策略:将默认 ViT-H 图像编码器中的知识提炼到一个微小的 ViT 图像编码器中,或者使用基于 CNN 的实时架构降低用于 Segment Anything 任务的计算成本。


在最近的一项研究中,Meta 研究者提出了另外一种改进思路 —— 利用 SAM 的掩码图像预训练 (SAMI)。这是通过利用 MAE 预训练方法和 SAM 模型实现的,以获得高质量的预训练 ViT 编码器。



  • 论文链接:https://arxiv.org/pdf/2312.00863.pdf

  • 论文主页:https://yformer.github.io/efficient-sam/


这一方法降低了 SAM 的复杂性,同时能够保持良好的性能。具体来说,SAMI 利用 SAM 编码器 ViT-H 生成特征嵌入,并用轻量级编码器训练掩码图像模型,从而从 SAM 的 ViT-H 而不是图像补丁重建特征,产生的通用 ViT 骨干可用于下游任务,如图像分类、物体检测和分割等。然后,研究者利用 SAM 解码器对预训练的轻量级编码器进行微调,以完成任何分割任务。


为了评估该方法,研究者采用了掩码图像预训练的迁移学习设置,即首先在图像分辨率为 224 × 224 的 ImageNet 上使用重构损失对模型进行预训练,然后使用监督数据在目标任务上对模型进行微调。


通过 SAMI 预训练,可以在 ImageNet-1K 上训练 ViT-Tiny/-Small/-Base 等模型,并提高泛化性能。对于 ViT-Small 模型,研究者在 ImageNet-1K 上进行 100 次微调后,其 Top-1 准确率达到 82.7%,优于其他最先进的图像预训练基线。


研究者在目标检测、实例分割和语义分割上对预训练模型进行了微调。在所有这些任务中,本文方法都取得了比其他预训练基线更好的结果,更重要的是在小模型上获得了显著收益。


论文作者 Yunyang Xiong 表示:本文提出的 EfficientSAM 参数减少了 20 倍,但运行时间快了 20 倍,只与原始 SAM 模型的差距在 2 个百分点以内,大大优于 MobileSAM/FastSAM。



在 demo 演示中,点击图片中的动物,EfficientSAM 就能快速将物体进行分割:



EfficientSAM 还能准确标定出图片中的人:



试玩地址:https://ab348ea7942fe2af48.gradio.live/


方法


EfficientSAM 包含两个阶段:1)在 ImageNet 上对 SAMI 进行预训练(上);2)在 SA-1B 上微调 SAM(下)。



EfficientSAM 主要包含以下组件:


交叉注意力解码器:在 SAM 特征的监督下,本文观察到只有掩码 token 需要通过解码器重建,而编码器的输出可以在重建过程中充当锚点(anchors)。在交叉注意力解码器中,查询来自于掩码 token,键和值源自编码器的未掩码特征和掩码特征。本文将来自交叉注意力解码器掩码 token 的输出特征和来自编码器的未掩码 token 的输出特征进行合并,以进行 MAE 输出嵌入。然后,这些组合特征将被重新排序到最终 MAE 输出的输入图像 token 的原始位置。


线性投影头。研究者通过编码器和交叉注意力解码器获得的图像输出,接下来将这些特征输入到一个小型项目头(project head)中,以对齐 SAM 图像编码器中的特征。为简单起见,本文仅使用线性投影头来解决 SAM 图像编码器和 MAE 输出之间的特征维度不匹配问题。


重建损失。在每次训练迭代中,SAMI 包括来自 SAM 图像编码器的前向特征提取以及 MAE 的前向和反向传播过程。来自 SAM 图像编码器和 MAE 线性投影头的输出会进行比较,从而计算重建损失。



经过预训练,编码器可以对各种视觉任务的特征表示进行提取,而且解码器也会被废弃。特别是,为了构建用于分割任何任务的高效 SAM 模型,本文采用 SAMI 预训练的轻量级编码器(例如 ViT-Tiny 和 ViT-Small)作为 EfficientSAM 的图像编码器和 SAM 的默认掩码解码器,如图所示 2(底部)。本文在 SA-1B 数据集上对 EfficientSAM 模型进行微调,以实现分割任何任务。


实验


图像分类。为了评估本文方法在图像分类任务上的有效性,研究者将 SAMI 思想应用于 ViT 模型,并比较它们在 ImageNet-1K 上的性能。


如表 1 将 SAMI 与 MAE、iBOT、CAE 和 BEiT 等预训练方法以及 DeiT 和 SSTA 等蒸馏方法进行了比较。


SAMI-B 的 top1 准确率达到 84.8%,比预训练基线、MAE、DMAE、iBOT、CAE 和 BEiT 都高。与 DeiT 和 SSTA 等蒸馏方法相比,SAMI 也显示出较大的改进。对于 ViT-Tiny 和 ViT-Small 等轻量级模型,SAMI 结果与 DeiT、SSTA、DMAE 和 MAE 相比有显著的增益。


目标检测和实例分割。本文还将经过 SAMI 预训练的 ViT 主干扩展到下游目标检测和实例分割任务上,并将其与在 COCO 数据集上经过预训练的基线进行比较。如表 2 所示, SAMI 始终优于其他基线的性能。



这些实验结果表明,SAMI 在目标检测和实例分割任务中所提供的预训练检测器主干非常有效。


语义分割。本文进一步将预训练主干扩展到语义分割任务,以评估其有效性。结果如表 3 所示,使用 SAMI 预训练主干网的 Mask2former 在 ImageNet-1K 上比使用 MAE 预训练的主干网实现了更好的 mIoU。这些实验结果验证了本文提出的技术可以很好地泛化到各种下游任务。



表 4 将 EfficientSAMs 与 SAM、MobileSAM 和 SAM-MAE-Ti 进行比较。在 COCO 上,EfficientSAM-Ti 的性能优于 MobileSAM。EfficientSAM-Ti 具有 SAMI 预训练权重,也比 MAE 预训练权重表现更好。 


此外, EfficientSAM-S 在 COCO box 仅比 SAM 低 1.5 mIoU,在 LVIS box 上比 SAM 低 3.5 mIoU,参数减少了 20 倍。本文还发现,与 MobileSAM 和 SAM-MAE-Ti 相比,EfficientSAM 在多次点击(multiple click)方面也表现出了良好的性能。



表 5 展示了零样本实例分割的 AP、APS、APM 和 APL。研究者将 EfficientSAM 与 MobileSAM 和 FastSAM 进行了比较,可以看到,与 FastSAM 相比,EfficientSAM-S 在 COCO 上获得了超过 6.5 个 AP,在 LVIS 上获得了 7.8 个 AP。就 EffidientSAM-Ti 而言,仍然远远优于 FastSAM,在 COCO 上为 4.1 个 AP,在 LVIS 上为 5.3 个 AP,而 MobileSAM 在 COCO 上为 3.6 个 AP,在 LVIS 上为 5.5 个 AP。


而且,EfficientSAM 比 FastSAM 轻得多,efficientSAM-Ti 的参数为 9.8M,而 FastSAM 的参数为 68M。



图 3、4、5 提供了一些定性结果,以便读者对 EfficientSAMs 的实例分割能力有一个补充性了解。





更多研究细节,可参考原论文。

在CVer微信公众号后台回复:EfficientSAM,即可下载论文pdf和代码链接!快学起来!

CVPR / ICCV 2023论文和代码下载
后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集

图像分割交流群成立


扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-图像分割 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。


一定要备注:研究方向+地点+学校/公司+昵称(如图像分割+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer444,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!


扫码加入星球学习


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
分割一切「3D高斯」版来了:几毫秒完成3D分割、千倍加速亲历:空气炸锅两分钟变火团!20分钟摧毁一个家!除身上衣服和手机,一家三口没了一切!AmEx Refer Jail (AmEx refer 功能突然消失)现象及解决方案【更新:恢复了!】斯坦福NLP提出EFT:如何不实际微调而“假装”微调了LLM?分割一切"3D高斯"来了!上交&华为提出SAGA:几毫秒完成3D分割一切!一天1400次地震!火山随时爆发!公路开裂15km吞噬一切!数千人逃命!温哥华人慌了专访丨积家CEO Catherine Rénier:情感联结和艺术表达对腕表也至关重要ICCV 2023 | 即插即用!百度提出S3IM:用于NeRF提点的Magic Loss第十三章 希腊文明和现代社会的关联 (3)hé bàng?hé bèng?NeurIPS 2023 | 港科大提出EAC:"可解释一切"图像概念解释器PyTorch团队重写「分割一切」模型,比原始实现快8倍跟着大厨,做几个家常菜Winter Break Nearing, China Targets Illegal Student Competitions“我已付出一切!” 州长在任近9年后突宣辞职,泪洒发布会现场休闲鞋搭一切!韩系通勤美拉德都有~PyTorch团队重写「SAM分割一切」模型,比原始实现快8倍!强省会受滞,这个中部大省加速分权加快10倍!GPT-Fast来了!使用原生 PyTorch 加速生成式 AI发疯文学拯救一切!亚裔小姐姐遭遇偏见,不仅没忍,还把自己遭受过的全还给对方!CES 2024丨PC新物种大爆发,透明屏乱战,车载屏火了,AI正深入一切!如何快速分析一款产品?"妈妈让我来自首",7岁男孩在派出所写下"bǎozhèng书"华为&中科大提出TinySAM:手机就能实时跑的分割一切模型他超爱!马斯克:不让她继续出演《海王》,我就毁掉一切!至高7折酒店任你选!2024春假美国迪士尼梦幻之旅:儿童餐食半价+$50畅玩一整天!MeetinTO打造家庭欢乐假期!与其被爱弹劾,不如卸甲归田美特斯邦威还有救吗?创始人复出回应一切!财报大爆发,奖金翻1.5倍!Meta全体员工都嗨翻了!扶桑游记(二)【东京的博物馆美术馆】家庭就是一切!加拿大男孩高中毕业不幸患癌,故事悲伤却又暖心!加速分化【八卦】疯马秀事件后,杨幂与baby关系出现裂痕,张大大生日细节揭露一切!邂逅诺贝尔文学奖得主中邂逅牛排Students, Migrants Get Early Rail Ticket Access
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。