媲美RLHF!复旦NLP组提出基于表征工程的生成式语言大模型人类偏好对齐
论文链接:
动机
▲ 图1. 不同人类偏好对齐算法的对比。(a)人类反馈的强化学习算法RLHF;(b)基于对比学习的偏好优化方法DPO;(c)基于提示工程的HIR;(d) 基于表征工程的RAHF。
方法
结果
表 2 报告了在不同生成采样温度下,偏好注释数据上我们自己所训练的奖励模型(Reward model)和第三方提供的奖励模型上的各方法的平均得分比较,这些数据也与表 1 的结果相吻合,并且表现出相似的趋势。
▲ 表2. 在不同生成采样温度下,偏好注释数据上所训练的奖励模型(Reward model)和第三方提供的奖励模型上的各方法的平均得分比较。
这项工作我们尝试了一种受认知神经科学理论启发的基于表征工程来实现生成式语言大模型与人类偏好对齐的策略,旨在提出一种轻量级和易实现的解决方案。目前仍然还有许多可改进的空间,我们希望这项研究能够有助于更可控人工智能技术的发展。
参考文献
[1]Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730-27744.
[2]Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C. D., & Finn, C. (2023). Direct preference optimization: Your language model is secretly a reward model. arXiv preprint arXiv:2305.18290.
[3]Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., & Liu, P. J. (2023). SLIC-HF: Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425.
[4]Yuan, Z., Yuan, H., Tan, C., Wang, W., Huang, S., & Huang, F. (2023). RRHF: Rank responses to align language models with human feedback without tears. arXiv preprint arXiv:2304.05302.
[5]Zhang, T., Liu, F., Wong, J., Abbeel, P., & Gonzalez, J. E. (2023). The wisdom of Hindsight makes language models better instruction followers. arXiv preprint arXiv:2302.05206.
[6]Liu, H., Sferrazza, C., & Abbeel, P. (2023). Languages are rewards: Hindsight finetuning using human feedback. arXiv preprint arXiv:2302.02676.
[7]Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren, R., ... & Hendrycks, D. (2023). Representation engineering: A top-down approach to AI transparency. arXiv preprint arXiv:2310.01405.
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:[email protected]
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
微信扫码关注该文公众号作者