自动驾驶3.0时代:特斯拉之后,下一个为什么会是毫末智行?
自动驾驶公司毫末智行预计,到 2025 年,高级别辅助驾驶搭载率将超 70%,行业由此正在进入一个以数据驱动为核心的新时代。
此时,智能驾驶功能「上车」不再是稀罕事。
如何低成本、高效率地获取车辆大规模上路行驶过程中的高质量、高价值数据,用以迭代技术,开始成为各玩家之间实力比拼的焦点。
毫末智行 CEO 顾维灏认为,数据规模要足够大,自动驾驶里程要至少达到 1 亿公里。此外,数据的多样性也要足够充分。
特斯拉无疑是跑在最前面的,其首提的「数据闭环」陀螺正转得越来越快。
据特斯拉 2022 年 Q2 财报,FSD Beta 版测试用户已经累计行驶约 4,200 万英里,而这还只是建立在 10 万名测试用户的基础上。
按照马斯克规划,如若今年年底测试人数扩大到 100 万,FSD Beta 的累计行驶里程将很快突破 1 亿英里。
在国内,量产辅助驾驶规模化增长速度以及自动驾驶技术演进速度,能与特斯拉相媲美的,目前恐怕只有毫末智行一家。
01
风雨 1000 天,
毫末闯过技术、量产、商业三大难关
作为一家创企,毫末智行凭何以在强手如林的自动驾驶江湖中率先杀出,拿下「国内运营里程第一」的成绩?
智能驾驶产品开发始终将安全放在首位; 产品体验「真香」才是王道; 基于用户真实场景数据驱动,实现产品快速迭代; 实现感知智能与认知智能高度一体化; 以开放的心态赋能客户,促进行业共同进步。
张凯尤其提到安全第一原则,随着智能驾驶应对的场景越来越复杂,这时越发凸显安全的重要性,事实上,这也是所有智能驾驶产品开发的基本出发点。
而在产品体验方面,毫末认为只有用 To C 思维做 To B 的事情,才能真正开发出能让 C 端市场接受的产品。
数据驱动是毫末的核心法则,张凯表示,通过挖掘用户真实使用场景数据实现产品快速迭代,以此提升用户的交互感知。
此外,打通感知智能与认知智能,以开发心态赋能客户促进行业共同发展也是毫末接下来的着力点。
张凯最后总结道:「我们正在克服疫情、供应链、技术本身带来的重重挑战,将在接下来的四个月时间里全力冲刺年初定下的量产交付目标。」
02
自动驾驶 3.0 时代,数据智能成胜负手
在本届 HAOMO AI DAY 上,被提及最多的一个词是「数据」。
正如前文所说,毫末认为行业正在进入一个以数据驱动为核心的新时代。
而这个新时代被毫末智行 CEO 顾维灏称为自动驾驶 3.0 时代。
在自动驾驶 1.0 时代,硬件数量决定能力高低。
不少企业通过堆料激光雷达等硬件,来实现自动驾驶,然而这种方式带来的效果不仅一般,而且增添了整车成本,导致难以批量化生产落地,其自动驾驶测试里程的范围也仅仅在 100 万公里左右。
随着 AI 技术登场,大算力中央计算芯片亮相,自动驾驶也开始进入 2.0 时代。
这也正是当前大多数企业所处的阶段。除了行驶效果明显提升,整车成本也开始下降,自动驾驶里程快速增加至上千万公里。然而,仍难以匹配技术发展速度的需求。
自动驾驶 3.0 时代趋于技术成熟形态,数据开启自训练,能够将自动驾驶里程飙升至 1 亿公里以上,目前也仅有特斯拉等少数车企能够接近这一成绩。
而在国内,毫末则可以说是离自动驾驶 3.0 时代最近的那一个。
这其中的难点不仅在于如何像特斯拉一样能够量产并卖出上百万台汽车,在道路上收集数据,还在于如何处理和挖掘 3.0 时代带来的海量数据。
针对这一难题,毫末在去年 12 月的 AI DAY 上,发布中国首个数据智能体系 MANA。
从架构上来说,MANA 由四大板块组成,分别是 TARS、LUCAS、VENUS 和 BASE。
其中,BASE 是整个系统架构的底层,包括数据底座、数据融合、PoseidonOS 等。
其他三大板块置于上层:
TARS 代表毫末智行的开发的原型算法,包括感知、规划决策、地图定位、仿真引擎;
LUCAS 代表车辆在现实中的感知、计算、验证等过程,即自动驾驶的大规模泛化;
VENUS 则是数据看板,以参考标准评价算法的好坏。
前面提到的数据挖掘就是由 LUCAS 自动化地完成,这和特斯拉不谋而合,后者之所以能够实现高效的数据处理,本质就是搭建起了类似 MANA 的一套数据智能模型。
随着毫末智能驾驶步入城市场景,「城市道路养护频繁」、「大型车辆密集」、「变道空间狭窄」、「城市环境多样」等难题接踵而至。
顾维灏总结,这在技术层面上带来六大挑战:
如何在自动驾驶领域应用大模型;
如何让数据发挥更大的价值;
如何使用重感知技术解决现实空间理解问题;
如何使用人类世界的交互接口;
如何让仿真更真;
如何让自动驾驶系统运动起来更像人。
为此,在本届 HAOMO AI DAY 上,MANA 在感知智能、认知智能等方面均迎来更新升级。
首先,MANA 通过使用大规模量产车无标注数据的自监督学习方法,大大提升了模型训练效果;
其次,MANA 感知能力提升,并构建了增量式学习训练平台,节省大量算力;
此外,通过使用时序的 transformer 模型在 BEV 空间上做虚拟实时建图,使得感知车道线的输出更加准确和稳定;
接着,MANA 在仿真系统中引入了高价值的真实交通流场景,时效性更高、微观交通流更真实,有效破解了城市路口通过「老大难」问题。
值得注意的是,除了感知方面,MANA 认知智能也迎来新阶段。通过对覆盖全国的海量人类驾驶进行深度理解,学习常识和动作拟人化,使得毫末辅助驾驶决策更像人类实际驾驶行为,可结合实际情况选择最优路线保证安全,体感更像老司机。
与此同时,毫末 MANA 新增的几项强大能力,以及 Transformer 深度学习大模型,也给算力带来巨大消耗。
顾维灏提到,Attention 大模型是 AI 发展的新趋势。
这源于其结构简洁,可以无限堆叠基本单元,得到巨大参数量模型,目前已经达到千亿、万亿量级。
随着参数量的增加和训练方法的提升,大模型的效果也稳步提升,在很多 NLP 任务上已经超越了人类的平均水平。
不过与此同时,毫末也发现,随着 Attention 大模型引入自动驾驶领域,对算力的需求远远超出了摩尔定律,这导致大模型训练成本非常高,在终端设备上落地尤其困难。
「一般 Transformer 所需算力是 CNN 所需算力的 100 倍,但在这种算力下平均 6.9% 的算力贡献了 94% 的价值,还有大量的弱关联、低价值的运算在乘加操作和功耗上,产生了很多浪费。」
为此,毫末正在通过低碳超算来降低自动驾驶成本,通过改进车端模型和芯片的设计来实现大模型的车端落地,通过数据的组织让大模型发挥更大效力。
作为同样仰赖数据智能的超级玩家,特斯拉遇到算力问题给出的解决方案是超级计算机 Dojo,其于 2021 年正式亮相,把自动驾驶拉到一个新高度。
几乎是同一时间,毫末在去年 12 月也宣布筹建自己的超算中心。
而今天,该超算中心正式揭开面纱。
顾维灏表示,毫末超算中心的目标是满足千亿参数大模型,训练数据规模 100 万 clips,整体训练成本降低 200 倍。
「除此之外,我们基于毫末场景库对训练数据进行有效组织提升了数据分布的合理性和多样性,并基于源源不断的量产实车人驾数据构建增量学习引擎,结合稀疏激活、算子深度优化等技术,持续优化训练成本。」顾维灏介绍道。
从大模型到数据智能体系,再到超算中心,如果说特斯拉在国外引领着行业的发展,那么毫末则是在国内扛起了自动驾驶的大旗,大洋两岸的头部玩家不约而同地在关键技术点选择了同一路线,不免让人期待接下来二者各自又会放出什么大招。
03
拿下中国首款大规模量产城市
NOH毫末快步奔向下一程
今年自动驾驶领域,最热闹的莫过于在城市道路场景下的竞争。
继小鹏打响城市 NGP 第一枪后,毫末不久也公布上线 NOH,成为国内第二家扎入城市场景的企业。
随后,理想、蔚来、极狐、集度、阿维塔、上汽智己等纷纷跟进,在其最新车型上搭载城市辅助驾驶功能。
从技术上来看,在以上所有玩家中,主要分为两派:一个是「感知融合 + 高精地图」派,另一个是「重感知、轻地图」派。而毫末属于后者,推出第一个重感知的城市辅助驾驶方案。
在毫末看来,尽管高精地图能够提供丰富的先验信息,但由于鲜度无法保障、监管审查问题,跟不上智能驾驶在国内城市大规模、大范围快速落地,积累数据反哺技术的需求。
这体现出毫末做技术战略决策的第一性原理,即能将数据规模优势快速转化为能力优势的技术路线才是好路线。
对于缺乏高精地图的感知部分,毫末利用基于 Transformer 的神经网络模型,来进行空间、时间、传感器三个维度的前融合,提升算法的准确率。
需要特别补充的是,Transformer 神经网络几乎在同一时间,由特斯拉和毫末智行引入到自动驾驶领域进行应用,从这里也可看出两地行业领头羊之间的默契。
在之前的 HAOMO AI DAY 上,毫末展示了采用独创的「双流」感知模型,实现轻地图下的红绿灯识别,以及通过自研的 BEV Transfomer,在城市道路上实现了多传感器融合车道线识别。
这一次,毫末又带来 NOH 六大亮点功能:
1、智能识别交通灯,涵盖中国各种形状信号灯
毫末城市 NOH 经过多场景仿真验证,可根据交通灯指示,实现「红灯停、绿灯行、黄灯减速通过」。
为了让用户熟悉,在绿灯状态下,需要用户轻点油门通过。
2、智能左右转
根据人类左右的经验路线,来设定车辆左右转的线路。系统设计在转向过程中会避让主动行人和非机动车。
3、智能变道
会根据导航和更高的通过效率自动进行变道,也会判断后方交通参与者的运 动情况和变道空间,安全完成自动变道。
4、智能躲避静态障碍物
可以准确的判断锥桶和路墩等障碍物,进行减速或者绕行。
如果绕行空间满足要求,就绕行;如果不满足,就减速等待时机。
5、智能躲避动态障碍物
会提供类似高速版本智慧躲闪的能力,对于行驶中的车辆等动态障碍物,毫末城市 NOH 首先会选择适当减速,然后根据绕行空间的可行性,选择减速跟行或者是绕行,以此来保障通过的安全性和效率。
6、智慧交通流处理
更像人类的驾驶方式,可根据转向灯和刹车灯,提前预知前车意图,做出更类似人类驾驶的操作,提高用户乘坐的舒适型。
毫末城市 NOH 将率先搭载在哪款车型上?
事实上,在 8 月的成都车展,答案提前揭晓:首发在全新摩卡 DHT-PHEV 激光雷达版车型。
按照长城汽车的规划,该车计划 9 月量产,年内发售,并且会实现上市即交付。而这也将标志着中国首款大规模量产的毫末城市 NOH 辅助驾驶系统正式「上车」。
虽未拿到「首宣」的毫末,以其更为领先一步的重感知技术路线,却首先让「量产城市 NOH」在中国率先落地。
这可能就是「毫末模式」的最好注释。
另一边,毫末末端物流自动配送车也突破了末端物流自动配送车的成本难关。
毫末智行的末端物流自动配送车「小魔驼 2.0」单车售价 12.88 万,是中国首款达到了十万元级,并已开始下线交付的量产无人配送小车,可覆盖园区及城市开放道路。
据张凯介绍,「毫末小魔驼 2.0」具备 L4 级自动驾驶、远程驾驶、低成本部署、车辆管理平台、远程监控平台、订单管理平台、微信小程序七大核心功能,能高效执行订单配送,在业界处于领先水平,预计年产量达一万台。
走过 1000 天,毫末来到一个新的历史起点,张凯将其比喻为「从步履蹒跚到踌躇满志」。
毫末过去的 1000 天,正是自动驾驶产业发展速度的缩影。在过去十年间,自动驾驶技术也呈现加速进化的特征。
现在,自动驾驶的 3.0 时代正呼啸而来,自动驾驶的新旧参与者们都在试图从这场变革性技术中抓住确定性。
显然,在当下,经历了智能驾驶规模化量产交付的大考,完成数据驱动的AI自动驾驶技术的不断进化,在特斯拉之后,能够率先赢得 3.0 时代门票,毫末智行是可预见的玩家。
相关阅读:
微信扫码关注该文公众号作者