Redian新闻
>
视觉Mamba模型的Swin时刻,中国科学院、华为等推出VMamba

视觉Mamba模型的Swin时刻,中国科学院、华为等推出VMamba

公众号新闻
机器之心专栏
机器之心编辑部


Transformer 在大模型领域的地位可谓是难以撼动。不过,这个AI 大模型的主流架构在模型规模的扩展和需要处理的序列变长后,局限性也愈发凸显了。Mamba的出现,正在强力改变着这一切。它优秀的性能立刻引爆了AI圈。

上周四, Vision Mamba(Vim)的提出已经展现了它成为视觉基础模型的下一代骨干的巨大潜力。仅隔一天,中国科学院、华为、鹏城实验室的研究人员提出了 VMamba:一种具有全局感受野、线性复杂度的视觉 Mamba 模型。这项工作标志着视觉 Mamba 模型 Swin 时刻的来临。



  • 论文标题:VMamba: Visual State Space Model

  • 论文地址: https://arxiv.org/abs/2401.10166

  • 代码地址: https://github.com/MzeroMiko/VMamba


CNN 和视觉 Transformer(ViT)是当前最主流的两类基础视觉模型。尽管 CNN 具有线性复杂度,ViT 具有更为强大的数据拟合能力,然而代价是计算复杂较高。研究者认为 ViT 之所以拟合能力强,是因为其具有全局感受野和动态权重。受 Mamba 模型的启发,研究者设计出一种在线性复杂度下同时具有这两种优秀性质的模型,即 Visual State Space Model(VMamba)。大量的实验证明,VMamba 在各种视觉任务中表现卓越。如下图所示,VMamba-S 在 ImageNet-1K 上达到 83.5% 的正确率,比 Vim-S 高 3.2%,比 Swin-S 高 0.5%。



方法介绍



VMamba 成功的关键在于采用了 Selective Scan Space State Sequential Model(S6 模型)。该模型设计之初是用于解决自然语言处理(NLP)任务。与 ViT 中注意力机制不同,S6 将 1D 向量中的每个元素(例如文本序列)与在此之前扫描过的信息进行交互,从而有效地将二次复杂度降低到线性。


然而,由于视觉信号(如图像)不像文本序列那样具有天然的有序性,因此无法在视觉信号上简单地对 S6 中的数据扫描方法进行直接应用。为此研究者设计了 Cross-Scan 扫描机制。Cross-Scan 模块(CSM)采用四向扫描策略,即从特征图的四个角同时扫描(见上图)。该策略确保特征中的每个元素都以不同方向从所有其他位置整合信息,从而形成全局感受野,又不增加线性计算复杂度。



在 CSM 的基础上,作者设计了 2D-selective-scan(SS2D)模块。如上图所示,SS2D 包含了三个步骤:


  • scan expand 将一个 2D 特征沿 4 个不同方向(左上、右下、左下、右上)展平为 1D 向量。

  • S6 block 独立地将上步得到的 4 个 1D 向量送入 S6 操作。

  • scan merge 将得到的 4 个 1D 向量融合为一个 2D 特征输出。



上图为本文提出的 VMamba 结构图。VMamba 的整体框架与主流的视觉模型类似,其主要区别在于基本模块(VSS block)中采用的算子不同。VSS block 采用了上述介绍的 2D-selective-scan 操作,即 SS2D。SS2D 保证了 VMamba 在线性复杂度的代价下实现全局感受野。


实验结果

ImageNet 分类



通过对比实验结果不难看出,在相似的参数量和 FLOPs 下:


  • VMamba-T 取得了 82.2% 的性能,超过 RegNetY-4G 达 2.2%、DeiT-S 达 2.4%、Swin-T 达 0.9%。

  • VMamba-S 取得了 83.5% 的性能,超过 RegNetY-8G 达 1.8%,Swin-S 达 0.5%。

  • VMamba-B 取得了 83.2% 的性能(有 bug,正确结果将尽快在 Github 页面更新),比 RegNetY 高 0.3%。


这些结果远高于 Vision Mamba (Vim) 模型,充分验证了 VMamba 的潜力。


COCO 目标检测



在 COOCO 数据集上,VMamba 也保持卓越性能:在 fine-tune 12 epochs 的情况下,VMamba-T/S/B 分别达到 46.5%/48.2%/48.5% mAP,超过了 Swin-T/S/B 达 3.8%/3.6%/1.6% mAP,超过 ConvNeXt-T/S/B 达 2.3%/2.8%/1.5% mAP。这些结果验证了 VMamba 在视觉下游实验中完全 work,展示出了能平替主流基础视觉模型的潜力。


ADE20K 语义分割



在 ADE20K 上,VMamba 也表现出卓越性能。VMamba-T 模型在 512 × 512 分辨率下实现 47.3% 的 mIoU,这个分数超越了所有竞争对手,包括 ResNet,DeiT,Swin 和 ConvNeXt。这种优势在 VMamba-S/B 模型下依然能够保持。


分析实验


有效感受野



VMamba 具有全局的有效感受野,其他模型中只有 DeiT 具有这个特性。但是值得注意的是,DeiT 的代价是平方级的复杂度,而 VMamaba 是线性复杂度。


输入尺度缩放



  • 上图(a)显示,VMamba 在不同输入图像尺寸下展现出最稳定的性能(不微调)。有意思的是,随着输入尺寸从 224 × 224 增加到 384 × 384,只有 VMamba 表现出性能明显上升的趋势(VMamba-S 从 83.5% 上升到 84.0%),突显了其对输入图像大小变化的稳健性。

  • 上图(b)显示,VMamba 系列模型随着输入变大,复杂性呈线性增长,这与 CNN 模型是一致的。


最后,让我们期待更多基于 Mamba 的视觉模型被提出,并列于 CNNs 和 ViTs,为基础视觉模型提供第三种选择。




© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
刷新多个SOTA!北大提出Video-LLaVA:超强视频语言大模型!GUT MICROBES丨中国科学院深圳先进院陈宇团队揭示阿尔茨海默症中肠道菌群驱动的外周-中枢代谢调控机制「飒智智能」获顺为等近亿元融资,拓宽移动操作复合机器人应用场景|36氪首发新年重磅!易方达、富国、华泰柏瑞、嘉实、银华、华宝、大成、工银瑞信、平安、摩根等10家基金拔头筹张荣桥校友当选中国科学院院士当选中国科学院院士的刘胜,是国内芯片封装技术的引领者背景提升学员|喜报!伦敦大学学院、南洋理工、香港科技大学、香港城市大学、伦敦大学国王学院、纽约大学、昆士兰大学offer来了!澳洲海滩惊魂一刻,25名游客被离岸流卷走!关键时刻,这群人出手了…hé bàng?hé bèng?6055 血壮山河 卢沟桥之变 24中国科学院:2023研究前沿-研判128个科学研究前沿LVM 是噱头还是通用视觉的新突破?24fall帝国理工学院、伦敦大学学院、伦敦大学国王学院近期录取合集来了! 指南者助力背景提升桃花依旧笑春风《科学》:中国科学院脑智卓越中心解析小鼠海马单神经元全脑投射规律悉尼海滩惊魂一刻,25名游客被离岸流卷走!关键时刻,这群人出手了…省机票的一些诀窍台湾政坛上新的两位女将· 蓝白合破局倒计时加州理工、JHU、圣母大学、威廉姆斯学院、斯沃斯莫尔学院早申放榜时间已明确!12月9日起开启放榜模式!热烈祝贺中国科学院自动化研究所程龙研究员荣登IEEE Xplore封面作者!100%降解,中国科学院团队基于AI计算策略设计新水解酶,实现高底物负载量PET塑料完全解聚让上帝的归上帝,让世俗的归世俗卢伟冰将接手小米;百度输入法推出VIP功能;库克回应头显国内推出时间:快了台海敏感时刻,中国大陆密集出招最高1500万启动,360万安家!中国科学院微生物所诚聘微生物组人才视觉Mamba来了:速度提升2.8倍,内存能省87%联合语言和视觉的力量,复旦团队发布全新多专家融合视觉-语言大模型OpenAI推出Vision Pro版ChatGPT;消息称谷歌将把Bard更名为Gemini,并推出独立应用丨AIGC日报中国科学院院士郝跃:第三代半导体的若干新进展视觉全新主干!中科院&华为提出VMamba:视觉状态空间模型聚焦丨喜报!这些学长新当选中国科学院、中国工程院院士AI早知道|Meta推出V-JEPA模型;英伟达首次公开超级计算机Eos清华大学与智谱 AI 联合推出 CogAgent:基于多模态大模型的 GUI Agent,具备视觉问答、视觉定位等能力南京大学、中国科学院、哈尔滨工业大学、中国人民大学等知名学者重磅来袭!LVMH集团主席最信赖的干将之一,Michael Burke 接掌 LVMH时尚集团
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。